
Design-space exploration of the most widely

used cryptography algorithms

I. Papaefstathiou*, V. Papaefstathiou, C. Sotiriou

Foundation for Research and Technology—Hellas (ICS-FORTH), Vassilika Vouton, 71110 Heraklion, Crete, Greece

Available online 11 September 2004

Abstract

Network data are, currently, often encrypted at a low level. In addition, as it is widely supported, the majority of future networks will use

low-layer (IP level) encryption. Moreover, current trends imply that future networks are likely to be dominated by mobile terminals, thus, the

power consumption and electromagnetic emissions aspects of encryption devices will be critical. This paper presents several realizations of

the two most widely used encryption algorithms, DES and AES, both in software and in hardware. We present software implementations of

the algorithms running on two of the state-of-the-art Intel IXP Network Processors and 11 hardware realizations based on a standard-cell

library. In particular, five of our hardware realizations are conventional flip-flop based clocked designs, whereas the other six are either

asynchronous, or latch-based synchronous designs. We demonstrate that the most efficient realization of the DES algorithm is one of the

proposed asynchronous hardware implementations, whereas for the AES algorithm the latch-based design presented seems to be optimal.

By placing and routing those designs, we have also realized that the commercial ASIC synthesis tools cannot accurately predict the area and

the performance of the placed and routed final netlist in such designs, since the ASIC implementations of the encrypted algorithms include a

very large number of wires and a limited number of logic CMOS cells.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Security protocols; AES; DES; Asynchronous circuits
1. Introduction

Low-level data encryption is becoming one of the

essential applications that network devices must implement.

One of the characteristics of data encryption algorithms is

that, when implemented on a general-purpose CPU, they

exhibit poor performance, even when running on a

sophisticated, state-of-the-art architecture.

To tackle this problem, special-purpose hardware

encryption cores, such as the one in Intel’s IXP-2850

network processor [9], are becoming more and more

ubiquitous in state-of-the-art networks for providing high-

speed encryption. Although, such special-purpose hardware

devices may satisfy bandwidth requirements, they seem to

have high power requirements and cause high electromag-

netic emissions (EME).
0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.08.009

* Corresponding author. Tel.: C30 6944277722; fax: C30 2810391609.

E-mail addresses: ygp@ics.forth.gr (I. Papaefstathiou), papaef@ics.

forth.gr (V. Papaefstathiou), sotiriou@ics.forth.gr (C. Sotiriou).
Further on, power consumption is becoming more and

more critical as network technology is shifting from today’s

wired devices to the mobile terminals of tomorrow. In

addition, EME levels are constantly increasing by the ever-

increasing clock frequencies, however, acceptable EME

levels are decreasing due to the close proximity of IP cores

in contemporary SOC designs. EME may also be used as a

means of attacking security devices, as they may reveal

critical information about the nature of the encryption

algorithm [11].

In this paper we perform a design space exploration of

the most widely used cryptography algorithms, namely the

DES and the AES [24]. We have implemented both

algorithms in both software and hardware and report on

the performance and power consumption (and area for the

hardware implementations) for each. This design explora-

tion includes, for completeness, the DES software results

and a number of the DES implementations is also presented

in Ref. [20]. Moreover, in this paper we investigate a

number of additional implementations of the DES
Microprocessors and Microsystems 28 (2004) 561–571
www.elsevier.com/locate/micpro

http://www.elsevier.com/locate/micpro


I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571562
algorithm, we present new, and very interesting as Section 3

shows, results regarding the placement and routing of all the

DES implementations and, more importantly, we also

explore all the different approaches for the realization of

the AES algorithm, both in software and in hardware.

Therefore, we believe that this paper presents a complete

review for all the currently, widely used encryption and

decryption frameworks.

Our software implementations are based on two of Intel’s

IXP network platforms, for which we wrote assembly core

implementing both algorithms and trying to utilize as many

as possible of its various programming features. Our

hardware realizations consist of 11 different hardware

implementations; five flip-flop based conventional

clocked implementations, four unclocked (asynchronous)

implementations and two latch-based synchronous ones. All

of those implementations have not only been synthesized,

but also placed and routed.

In the next sections we present our experimental results

and demonstrate that both commodity and high-end

special-purpose Network Processors exhibit a significant

amount of power consumption at very modest perform-

ance, when executing the encryption software. We also

demonstrate that the most efficient realization of the DES

algorithm, when taking into account the data bandwidth

supported and the power consumed, is an asynchronous

one, while for the AES the most effective implementation

seems to be a latch based synchronous one. Finally, we

show that the results produced by the synthesis tools for

this class of algorithms, differ significantly in both area

and performance from the reported results by the

placement and routing tools. This discrepancy, which we

believe it is an important aspect for anyone implementing

encryption algorithms in hardware, is probably due to the

following fact: the implementations of those encryption

algorithms include a very large number of wires and

limited amount of CMOS logic, and as it is widely

known, the synthesis tools are not very well in calculating

the area and the delays of the wires.
2. Related work

There is a considerable amount of work done in both

industry and academia related to cryptographic algorithms

and their performance evaluation. In the literature, there are

several implementations of the two most widely used

cryptographic algorithms (DES and AES) in either software,

or hardware; the hardware approaches are tailored to both

ASICs and FPGAs.

Regarding the software implementations of DES, on

various platforms, the maximum throughput achieved is

around 100 Mb [2,16]. When moving to the FPGA

implementations, the fastest DES ciphers presented can

provide 12 Gb/s of useful bandwidth [15], but with key

setup latency in the order of milliseconds, or even 21 Gb/s
[17] with a highly pipelined design, which is much more

complicated, in terms of hardware, than all the designs

presented in this paper. As far as the ASIC implementations

are concerned, there are fabricated single chip approaches

that support up to 9.6 Gb/s [10,18] even though they are

implemented on relatively old CMOS processes (at 0.6 and

0.35 mm). In this paper, regarding the DES algorithm, we fill

the gap of modern software implementations by measuring

the performance of both a commodity and a state-of-the-art.

Network processor when executing this encryption algor-

ithm; more importantly we present a number of low-cost,

low-power implementations for ASICs that achieve

throughputs close to 40 Gb/s.

The new AES algorithm has been given, in the last

couple of years, much attention. However, even quite

‘exotic’ software implementations for AES [1,7] exhibit a

relatively low throughput of less than 250 Mb/s. Moving to

the FPGA implementations, the most complex designs

(with a hardware complexity significantly higher than those

presented in this paper) can achieve throughputs as high as

3.65 Gb/s [4,19]. On the ASIC side there are some

impressive implementations that claim to support up to

70 Gb/s. An IBM core [14] fabricated in the next generation

cooper 0.13 mm technology, supports 10 Gb/s but with an

exotic S-Box architecture and a clock of 780 Mhz while,

probably, consuming more than 1 W of power. More

recently, a processor that supports 30–70 Gb/s with

minimum area cost, in 0.18 mm technology [8], has been

presented. What probably makes this core hardly practical is

the fact that the key scheduling is done offline. On our

implementations we used a commodity synthesis and back-

end flow for semi-custom design in a standard 0.18 mm

technology. Our goal, for the AES hardware implemen-

tations, was to achieve relatively high throughput with very

low power consumption; as a result the best of the presented

designs can support (after placement and routing) up to

2.5 Gb/s with a power consumption of about 100 mW.

Moreover, our designs can easily be pipelined, which will,

as Section 4 demonstrates, results in a bandwidth up to

10 times higher (and obviously a similar increase in the

power consumption).
3. DES and AES software implementations

In this section we explore the performance of the two

encryption algorithms implemented in software running on

two Network Processors, a commodity and a state-of-the-art

one. The commodity network processor of choice is the

widely used Intel IXP-1200 [9]. The IXP-1200 is a

powerful, multiprocessor system, composed of six 32-bit

RISC processing ‘microengines’ and a single general-

purpose StrongARM CPU. To enable fast on-chip proces-

sing the IXP contains a 4K on-chip SRAM ‘scratch’

memory. For certain applications its performance may

support processing rates of up to 1 Gb/s.



Table 1

Encryption results using one IXP1200 microengine

1-IXP DES AES

Latency (ns) IC Throughput (Mb/s) Latency (ns) IC Throughput (Mb/s)

Key setup 412,405 93,000 N/A 92,460 21,000 N/A

First block encryption 428,038 3808 3.74 266,662 2394 5.98

Second block encryption 444,032 3808 3.84 265,237 2394 6.12

Third block encryption 460,026 3808 3.88 271,802 2394 5.83

Table 2

Decryption results using one IXP1200 microengine

1-IXP DES AES

Latency (ns) IC Throughput (Mb/s) Latency (ns) IC Throughput (Mb/s)

Key setup 410,955 93,000 N/A 185,964 42,110 N/A

First block decryption 427,669 3970 3.62 264,320 2453 5.86

Second block decryption 444,334 3968 3.71 252,942 2453 5.93

Third block decryption 461,000 3968 3.69 252,272 2453 5.95

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571 563
To evaluate the performance of the IXP processor when

running both algorithms we hand-crafted assembly code

implementing the algorithm. In addition, we developed

several software realizations of our encryption algorithms,

in order to be able to exploit one or more of the six IXP

processing ‘microengines’.

Tables 1 and 2 show the performance of the IXP

processor running our hand-crafted assembly code on only

one of the six microengines. Three different data blocks

were encrypted for these experiments using the same key.

Thus, key setup was run only once, and then each of the

three blocks were encrypted and then decrypted. Table 1

shows the latency, instruction count (IC) and throughput for

the encryption of the three blocks, whereas Table 2 shows

the same data for their decryption.

In our next experiment we attempted to use the

StrongARM CPU instead of a single microengine, however,

we discovered that the StrongARM performance was lower

than that of a single microengine. This can be attributed to

the fact that the on-chip scratch memory exhibits long

latency with respect to the StrongARM processor

(as opposed to the microengines which communicate

through an interconnection network), thus creating a

bottleneck and producing poor performance.

Next, we distributed six copies of the encryption/decryp-

tion code onto the six IXP microengines with the aim of
Table 3

Encryption results using 6 IXP1200 microengines

6-IXP DES

Latency (ns) IC Through

Key setup 412,405 93,000 N/A

First 6-block encryption 430,613 4407 20.23

Second 6-block encryption 446,731 4407 20.26

Third 6-block encryption 463,425 4407 20.26
achieving even better performance by utilizing all of the

IXP’s available resources. This experiment required a

significant amount of effort for packing the DES and AES

code into a minimum number of instructions in order to fit

the code together with the data onto the small SRAM

scratch memory. It was essential that the scratch memory

was used, since, in any other case, accesses to an external

SRAM caused the performance of this experiment to be

only twice as high as that of the single microengine one.

Tables 3 and 4 show the performance of both algorithms

using the same experimental setup, but running on all six of

the IXP’s microengines. The figures demonstrate a 5.5 times

improvement in throughput when all the IXP’s micro-

engines are used. Based on this fact we claim that the

latency of the IXP microengine interconnection network

does not significantly reduce the performance of the device.

However, even this higher throughput when executing the

fastest from the two algorithms (i.e. AES), is insufficient for

contemporary commodity network architectures, e.g. Fast-

Ethernet, which runs at 100 Mb/s, or Wireless LAN,

802.11a running at 52 Mb/s.

We have also, measured the performance of the

encryption algorithms in the state-of-the art, very

recently introduced, IXP processors [9] (the IXP-2xxx

family) that has just been manufactured in Intel’s 0.13 mm

technology.
AES

put (Mb/s) Latency (ns) IC Throughput (Mb/s)

92,460 21,000 N/A

271,028 ns 2713 32.43 Mb/sec

270,159 ns 2713 32.56 Mb/sec

268,225 ns 2713 32.89 Mb/sec



Table 4

Decryption results using 6 IXP1200 microengines

6-IXP DES AES

Latency (ns) IC Throughput (Mb/s) Latency (ns) IC Throughput (Mb/s)

Key setup 410,955 93,000 N/A 185,964 42,110 N/A

First 6-block decryption 431,421 4582 19.35 280,692 2890 30.82

Second 6-block decryption 447,968 4582 19.46 284,945 2890 30.13

Third 6-block decryption 464,793 4582 19.39 277,832 2890 31.05

Table 5

Encryption results using all eight IXP1200 microengine

8-IXP2400 DES AES

Latency (ns) IC Throughput (Mb/s) Latency (ns) IC Throughput (Mb/s)

Key setup 157,241 91,213 N/A 37,493 ns 21,000 N/A

First 8-block encryption 164,894 4230 72.22 42,148 ns 2698 112.09 Mb/s

Second 8-block encryption 174,713 4230 72.22 46,658 ns 2698 112.09 Mb/s

Third 8-block encryption 182,423 4230 72.22 51,280 ns 2698 112.09 Mb/s

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571564
The results of our experiments are shown in Tables 5

and 6 where all the microengines of IXP-2400 are

employed. Those results are the ones we could achieve

after running our handcrafted pieces of software realizations

of the two encryption algorithms running on one to eight

microengines. A first remark is that the IC in the IXP2400 is

slightly lower than that on the IXP1200, mainly due to the

fact that the IXP2400 has a different instruction set, and it

supports some special ‘powerful’ instructions utilizing some

of the unique hardware features provided by it (for example

the 16 entry CAM which is associated with each

microengine).

As it can be seen from those tables, even in those

high-end devices, the maximum bandwidth supported is

not more than 80 Mb/s for the DES and 120 Mb/s for

the AES. As a result, we believe that, the software

implementation of those encryption algorithms cannot,

support the state-of-the-art LAN speeds, even if those

pieces of software are run on a high-end network multi-

processor. Similar results regarding the software perform-

ance in various, non-network specific, platforms, can be

found in Ref. [26]. The applicability of this argument in

the world of network processing elements, in general, is

also shown by the fact that, as it was mentioned earlier,

Intel’s high-end family of Network Processors include
Table 6

Decryption results using all eight IXP2400 microengines

8-IXP2400 DES

Latency (ns) IC Through

Key setup 157,241 91,213 N/A

First 8-block decryption 164,642 4379 68.27

Second 8-block decryption 171,964 4379 68.27

Third 8-block decryption 179,087 4379 68.27
a model with an embedded hardware DES block

(IXP2850).

Table 7 shows the mean power consumption actually

measured in the development board, when the IXP1200 was

running our experiments. These figures show only the power

consumed by the processor core and not by the processor’s

interface, which operates at a different voltage level. The

power consumption was about the same no matter which of

the two cryptography algorithms the core was executing.

These measurements are in line with the IXP’s datasheet,

which states a maximum power consumption of 4 W and a

typical power consumption of approximately 2.4 W. In

these experiments we have not come close to the maximum

power consumption, by not using the StrongARM core.

The power figures demonstrate that even a dedicated,

state-of-the-art, low-power CPU, certainly exceeds the

power requirements of mobile network terminals, when

executing either of the two most widely used cryptography

algorithms.
4. DES synchronous hardware implementations

In this section we present several hardware implemen-

tations of the DES algorithm. We implemented two types of
AES

put (Mb/s) Latency (ns) IC Throughput (Mb/s)

73,242 41,732 N/A

78,042 2864 116.32

82,142 2864 116.32

86,965 2864 116.32



Table 7

IXP core power consumption

SW design IXP core power (W)

DES or AES on one microengine in IXP1200 1.8

DES or AES on six microengines in IXP1200 3.2

Table 9

DES synchronous designs: placed and routed results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO SDES(PERM) 70.4 0.91 12.55 52

PO SDES(PERM) 41.6 24.6 553.3 842

PO SDES(OD) 49.2 21.46 412.1 912

Key. AO SDES(PERM), Area-Optimized synchronous DES based on

permutations; PO SDES(PERM), Performance-Optimized synchronous

DES based on permutations; PO SDES(OD), Performance-Optimized

synchronous DES, our design.

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571 565
hardware implementations, synchronous (clocked) and

asynchronous (unclocked). All designs were synthesized,

using Synopsys [25]; placed and routed, using Cadence’s

Silicon Enseble [3], and targeted to the 0.18 mm VST-UMC

[5] technology library. We also present, separately, the

results produced by the synthesis tools and those produced

by the placement and routing tools that make the final

silicon masks. As it is demonstrated in the next sections,

those results differ by a relatively large amount, probably,

due to the fact that there is a large number of wires in any

DES implementation.
4.1. Synchronous hardware implementations

We implemented three synchronous implementations of

the DES algorithm. Two of these were based on just

permutations of bits and a final XOR of them. The third was

our own design optimized for low power, and it is based on

three hardware modules the RL, F and Key, just as the

software implementation of the DES, which comprises of

those three subtasks. This design was also used as the basis

for the asynchronous designs described in Section 4.2.

Table 8 contrasts the characteristics of the three synchro-

nous DES designs.

The data presented in Table 8 were obtained by post-

synthesis simulation. The power consumption figures were

obtained by performing switching activity annotation of the

circuit during simulation. The area figures are cell totals.

The Area-Optimized version aims to achieve minimum

area for a DES algorithm implementation, by performing

the 16 steps of the DES algorithm iteratively and with

limited CMOS resources, whereas the Performance-Opti-

mized version aims at maximum throughput by employing a

16-stage pipeline, comprising of 16 identical high-speed

DES modules. Our own design has 16 pipeline stages as

well, and each stage is optimized mainly for low power by

trying to reduce both the number of the CMOS cells utilized
Table 8

DES synchronous designs: synthesis results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO SDES(PERM) 65.6 0.97 31.74 37

PO SDES(PERM) 28.8 35.7 661.69 5952

PO SDES(OD) 27.28 32.27 331.4 675

Key. AO SDES(PERM), Area-Optimized synchronous DES based on

permutations; PO DES(PERM), Performance-Optimized synchronous DES

based on permutations; PO SDES(OD), Performance-Optimized synchro-

nous DES, our design.
at a given time and the signal transitions to a minimum. The

actual architecture is very similar to the ‘Coarse-Grain’

asynchronous one described in detail in Section 4.21. As

those results demonstrate, our design succeeds in its target

since it has much lower power consumption than the

Permutation-Based Performance-Optimized one, while its

speed is not significantly lower. In other words, the

performance to power ratio is about 30% better in our

design than in the widely used permutation based one.

We have also placed and routed (P&R) all those designs

design using Cadence’s Silicon Ensemble flat P&R tool.

Post P&R results demonstrated a significant increase in the

latency of the designs as Table 9 clearly shows. This

increase in latency is much higher than the 20% factor used

as a rule of thumb in the majority of the general-purpose

hardware modules [23]. This discrepancy seems to mainly

come from the fact that in the implementations of those

encryption algorithms the fraction of wires over logic cells

is very high (much larger than in other more regular devices,

such as processors for example). Additionally, as the flat

layout of our own Performance-Optimized DES core shows

in Fig. 1, the interconnected basic blocks, within an

implementation, have great variations in terms of the their

complexity, and therefore they cannot easily ‘pitch-

matched’ (at least automatically by the tools and without

any human interaction).

Moreover, the power consumption figures actually

measured after P&R, differ significantly from the ones

produced by switching annotation of the post synthesis

circuit. This is probably due to the facts that: (a) the

maximum working frequency after P&R is different than that

reported by the synthesis tools, and (b) the synthesis tools

cannot accurately predict the capacitance of the wires or the

exact impact of factors such as the actual applied voltage.

4.2. DES asynchronous hardware implementations

The reasons for exploring asynchronous implemen-

tations of encryption algorithms, and not only the

conventional synchronous designs, are the following:
1 This ‘Coarse Grain’ asynchronous design comes from a synchronous

one to which we have applied the ‘desynchronization’ method, also

presented in Section 4.2.



Fig. 1. Layout of our Performance-Optimized synchronous DES implementation.

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571566
asynchronous circuits have several properties, that make

them desirable in mobile and security applications. The

absence of a central synchronization mechanism relieves the

designer from the need to distribute one or more clocks,

with negligible skew, to every sequential elements of the

circuit. This results in a considerable saving of power, since

low-skew drivers are extremely power-hungry. Asynchro-

nous circuits also exhibit dramatic improvements in terms of

EME. This is due to the fact that flip-flops no longer switch

in phase, thus reducing noise power. The absence of a

reference point also makes it harder to attack a secure

device, such as a public-key encryptor or decryptor, in order

to identify its secret keys, by analyzing current absorption at

specific points during the clock cycle. All these advantages

are offset by a traditionally harder design cycle.
4.2.1. De-synchronization

We implemented asynchronous versions of the DES

algorithm by exploiting the methodology of de-synchroni-

zation. De-synchronization is a design technique that

replaces the clock distribution tree of a traditional

synchronous circuit is replaced by a local synchronization

mechanism, built out of very simple standard handshaking

circuits [22]. This idea has been discussed in the past in

Ref. [13], where it was suggested to replace each gate

(or combinational logic block in an FPGA-based implemen-

tation) of a synchronous circuit with a complex sequential

circuit. Similarly [12] proposed a design flow that used

synchronous tools for synthesis, and then replaced each

combinational gate in the optimized circuit with a sequential

majority-gate-based sub-circuit.



I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571 567
De-synchronization works at the level of combinational

logic and multi-bit registers. Any synchronous circuit may

be de-synchronized by doing the following steps. Firstly,

control part and datapath are separated. Next, the datapath is

implemented by employing the de-synchronization

approach (i.e. each register is clocked individually at the

right time by an asynchronous control circuit). Timing the

combinational logic delay required to produce data between

pairs of registers may be implemented using delay elements.

Lastly, the asynchronous control circuitry is designed using

an asynchronous design approach, in our case direct-

mapped AFSMs [21].

4.2.2. Asynchronous DES designs

We implemented four asynchronous DES versions, an

Area-Optimized non-pipelined design, a Fine-Grain

pipelined design and two versions of a Coarse-Grain

(or Performance-Optimized) pipelined design, one flip-

flop based and one latch based. All four designs were

implemented bottom-up in VHDL. Each showed a different

trade-off between the complexity of the control part and the

size of the datapath. This resulted in using handshaking-

based local clocking at different levels of granularity. Those

designs are totally different from the synchronous ones.

The Area-Optimized version aims to achieve minimum

area for a DES algorithm implementation. The asynchro-

nous Area-Optimized DES is composed of three datapath

modules, RL, KEY and F and a DES control unit, as shown

in Fig. 2.

In our Area-Optimized DES, the algorithm is

implemented iteratively with modules RL and KEY
Fig. 2. Area-Optimized a
internally feeding back their results. The KEY module

uses the result of the current iteration to produce the next

DES key. The RL module uses the result of the current

iteration and the output of the F module to produce the next

values for variables R and L, the right and left parts of the

encrypted data. According to the DES algorithm, the

encrypted output data are produced after 16 iterations by

joining R and L. The control unit was designed using

AFSMGEN as a complex AFSM, that counts the RL and

KEY module handshakes (by sampling the reqout_RL

and reqout_K signals, registering the count and then

outputing the new reqout_RL_c and reqout_K_c signals)

and after registering 16 iterations, it de-asserts the feedback

signal, outputs a done signal and generates the output

request signal.

The Fine-Grain pipelined DES is derived from the

Area-Optimized version by replicating its three datapath

blocks (i.e. RL, KEY and F 16 times), as in Fig. 3. This

produces a Fine-Grain pipeline (of smaller grain than a

DES iteration). By unrolling the datapath, the need for a

separate control unit is eliminated and the only control

signals are the handshakes between the RL, KEY and F

stages.

The Performance-Optimized or Coarse-Grain version of

the asynchronous DES squashes the logic and handshakes of

the RL, KEY and F modules of the Fine-Grain version into a

single stage of logic and a single register, thus removing

internal handshaking overhead. There are two versions of

the Performance-Optimized asynchronous DES; a version

implemented using edge-triggered flip-flops and one using

level-sensitive latches. The high-level structure of
synchronous DES.



Fig. 3. Fine-Grain pipelined asynchronous DES.

Table 10

DES asynchronous designs: placed and routed results

HW design Latency (ns) Th/put (Gb/s) Power Area

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571568
the Performance-Optimized asynchronous DES is shown in

Fig. 4.

Table 10 contrasts the characteristics of these four

asynchronous DES designs. Note that the power consump-

tion numbers shown have been produced by measuring the

actual circuit consumption after placement and routing.

The additional asynchronous control required to

implement the Area-Optimized and Fine-Grain pipelined

ADES designs implies a significantly high cost in

performance (and control complexity is indeed higher than

the datapath complexity, which is only a few levels of

logic). Thus, the performance of these versions is control-

bound. This is somewhat similar to the software

implementations.

However, results are particularly striking for the

Performance Optimize (PO) versions. The asynchronous

versions have comparable performance and the flip-flop

version exhibits a significant power improvement. Note that

even by lowering the voltage of the synchronous version in

order to match its performance to the asynchronous power-

optimized ADES, the power advantage of the latter remains

significant. The difference is essentially due to the power

consumed by the clock tree. The latch design is faster as

latches have a shorter propagation delay, however, it

consumes more power than the equivalent edge-triggered

versions because in our implementation latches are

normally open and close when data arrive, so arriving

inputs can potentially cause a large number of transitions in

the asynchronous pipeline.

When comparing those results with the synchronous

ones, we see that the flip-flop based Performance-Optimized

asynchronous design has a higher performance to power

ratio than the best synchronous one by about 12%, while

they cover about the same silicon area.

The asynchronous versions, as opposed to their synchro-

nous counterparts, consume almost no power when idle
Fig. 4. Coarse-Grain pipelined asynchronous DES.
(as expected), whereas for the synchronous DES designs

presented earlier in the paper, power consumption does not

drop significantly. For example, we performed an exper-

iment where we exercised our synchronous Area-Optimized

DES with a 50% throughput (16 busy followed by 16 idle

cycles); the power consumption actually measured after

P&R dropped to 171.38 mW; for the asynchronous it

dropped to 12.78 mW.

It should be noted that in this section we do not present

the results of the synthesis tool since the commercial

synthesizers cannot accurately predict the performance of

the final design due to the fact that their predictions are

mainly based on the notion of one or a small number of

global clocks and in our designs we do not have such

clocks.

As all the results, for both the synchronous and

asynchronous designs, clearly demonstrate, the fastest

implementation of the DES algorithm can service up to

38.78 Gb/s of network data. Since, according to Ref. [6],

more than 5%, in average, of the network traffic should not

be encrypted (i.e. the headers of packets or the minimum

size ‘ack’ packets in TCP/IP networks), we claim that our

device can fully utilize even the state-of-the-art network

speeds of 40 Gb/s (0C-768), while consuming much less

than half a Watt of power.
4.3. AES hardware implementations

In this section we present four different implementations

of the AES algorithm. Two of them are conventional

flip-flop based synchronous designs; one is optimized for
(mW) (Kmm2)

AO DES 138 7.42 23.76 83

FGP DES 69.74 10.42 70.04 882

PO DES(F) 30.83 33.16 156.29 560

PO DES(L) 26.36 38.78 420.8 512

Key. AO DES, Area-Optimized asynchronous DES; FGP DES, Fine-Grain

pipelined asynchronous DES; PO DES(F), Performance-Optimized

asynchronous DES, flip-flop design. PO DES(L), Performance-Optimized

asynchronous DES, latch design.



Fig. 5. Encryption AES module.

Table 11

AES designs: synthesis results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO Enc AES(FF) 57.6 2.2 85.49 245

AO Dec AES(FF) 96.4 1.33 175.21 426

PO Enc AES(FF) 25.2 5.07 121.7 340

PO Dec AES(FF) 64.8 1.97 206.85 526

Key. AO Enc AES(FF), Area-Optimized encryption AES flip-flop design;

AO Dec AES(FF), Area-Optimized Decryption AES flip-flop design; PO

Enc AES(FF), Performance-Optimized encryption AES flip-flop design;

PO Dec AES(FF), Performance-Optimized decryption AES flip-flop design.

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571 569
speed, while the other is optimized for performance. The

other two realizations are latch-based designs optimized

either for performance or speed.

All those designs are based on the same architecture

which is shown in Figs. 5 and 6. As it widely known the

AES’ encryption and decryption procedures are not

symmetrical and therefore different modules are used for

encryption and decryption.

The Area-Optimized designs, were produced by slightly

altering the initial simple VHDL code implementing the

AES, and mainly, by utilizing the most sophisticated

features of the Synthesis and placement and routing tools.

Several runs of the whole design flow were executed, using

different synthesis and P&R parameters, until, what we

claim are, the optimal results were produced. In particular,

we have set the maximum area in synthesis to 0 and the

‘area effort’ to the maximum possible, whereas in the P&R

process we have tried using different cells from the library

so as to achieve the best ‘pitch-match’ possible, and group,

by hand, the library cells in such a way so as to reduce the

routing overhead. Similarly for the Performance-Optimized

design, we have not altered the VHDL description of the

core but instead we have tried to produce the best synthesis

and P&R results by altering the different parameters at those

levels so as to balance the latency and throughput of the

various submodules. In particular, in the synthesis phase, we

have allowed the tool to use as much area as needed, while

we have also asked for the fastest possible circuit the tool

can produce (we set the ‘performance effort’ to the

maximum possible). In the P&R process, we have

handcrafted the produced netlist several times, so as to:
Fig. 6. Decryption AES module.
(a) use the optimal library cells for our hardware

organization (for example very ‘strong cells’ when driving

‘important’ wires and smaller when driving less ‘important’

ones), and (b) reduce the length of the interconnection wires

in the critical paths. The latter optimization resulted in

higher performance by more than 12%.

In other words, in both cases, we have tried to

demonstrate the differences in the final netlist’s character-

istics, triggered when altering the synthesis and P&R

parameters. It should be noted that none of the above

designs is pipelined, and that is the reason that the

throughput shown in this section is much lower than that

of the DES implementations. By using the technique of

pipelining and/or parallelism, we can increase the band-

width supported by a factor of 10 quite easily, just as we did

in the DES case. For example, for encrypting a single data

item, the AES algorithm must run 10 identical iterations so

by plugging 10 of those stand-alone AES cores in a pipeline

(which will be perfectly balanced), there will be no data or

control dependencies between those stages and therefore the

data bandwidth supported will be (almost) 10 times higher

than the one achieved by the single AES core.

As Table 11 shows, the throughput of the synthesized

Performance-Optimized module is more than 100% higher

than that of the Area-Optimized module, while the power

consumed is less than 40% higher in the Performance-

Optimized design. We thus claim that the different synthesis

parameters can severely affect the characteristics of the

devices implementing such encryption/decryption algorithms.

In Table 12 we demonstrate the results after placement

and routing. It is an evident that the throughput of the PO
Table 12

AES designs: placement and routed results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO Enc AES(FF) 55.2 2.31 79.24 349

AO Dec AES(FF) 110.4 1.15 163.72 602

PO Enc AES(FF) 43.2 2.96 112.48 484

PO Dec AES(FF) 96 1.33 193.45 743

Key. AO Enc AES(FF), Area-Optimized encryption AES flip-flop design;

AO Dec AES(FF), Area-Optimized decryption AES flip-flop design; PO Enc

AES(FF), Performance-Optimized encryption AES flip-flop design; PO

Dec AES(FF), Performance-Optimized decryption AES flip-flop design.



Table 14

AES designs: placed and routed results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO Enc AES(LA) 56.2 2.28 84.82 363

AO Dec AES(LA) 92.22 1.39 196.47 656

PO Enc AES(LA) 49.7 2.57 129.09 476

PO Dec AES(LA) 87.6 1.46 225.49 808

Key. AO Enc AES(LA), Area-Optimized encryption AES latch design; AO

Dec AES(LA), Area-Optimized decryption AES latch design; PO Enc

AES(LA), Performance-Optimized encryption AES latch design; PO

Dec AES(LA), Performance-Optimized decryption AES latch design.

I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571570
approach was significantly reduced, while the Area-

Optimized one was not heavily affected. Moreover, even

though the throughput of the PO design was reduced, its

power consumption was not. The performance of the PO

design after placement and routing does not differ

significantly with that of the AO probably due to the fact

that in the placed and routed design, the high delay and

capacity of the large number of wires were taken into

account and since the two designs have similar number/

length of wires, their performance and power characteristics

were much closer. As a result, even though after synthesis

the PO design seems to be the optimal one, in terms of the

performance to power ratio, the final netlist (after P&R)

shows that the AO design is probably more efficient.

In general, and taken into account the similar results for

the DES case, we claim that when implementing an

encryption algorithm, the designer should be aware that

the placed and routed design, may have performance

characteristics that differ by much more than 20%, which

is the typical factor used today for the performance/latency

discrepancies between the synthesized and the placed and

routed netlists. We believe that this is due to the fact that in

the implementations of the cryptography algorithms the

wire to logic-cells ratio is much higher than in the case

of other special or general purpose hardware modules,

such as Microprocessors, Memory Management Systems,

Schedulers, etc.

Finally, we have implemented two latch-based designs.

The reason for producing them was that the latches have

lower propagation delay than the flip-flops; therefore the final

design would probably be faster. As Tables 13 and 14 show,

the latch based designs are indeed up to 10% faster both at the

synthesis and the P&R level, than the corresponding flip-flop

based designs. Moreover, the power consumed by the

Performance-Optimized module is about 7% lower than

that of corresponding flip-flop design. This is probably due to

the fact that the synthesis tool is using a gated-clock

methodology when implementing a module based on latches

rather than flip-flops (since it is much easier and safer to

‘block’ the clock when latches are used), and that certainly

reduces the power consumption when a module is idle.

Furthermore, the latch-based design can very easily be

transformed to an asynchronous one [27] and gain all
Table 13

AES designs: synthesis results

HW design Latency

(ns)

Th/put

(Gb/s)

Power

(mW)

Area

(Kmm2)

AO Enc AES(LA) 52.4 2.37 84.82 269

AO Dec AES(LA) 85.38 1.29 196.47 511

PO Enc AES(LA) 23.8 5.31 129.09 387

PO Dec AES(LA) 63.1 2.03 225.49 641

Key. AO Enc AES(LA), Area-Optimized encryption AES latch design; AO

Dec AES(LA), Area-Optimized decryption AES latch design; PO Enc

AES(LA), Performance-Optimized encryption AES latch design; PO

Dec AES(LA), Performance-Optimized decryption AES latch design.
the advantages of the asynchronous devices such as no

power consumption when idle and much lower EME. As a

result, we claim that the most efficient implementation of the

AES algorithm is this latch-based one.
5. Conclusions

This paper explored different implementation choices for

implementing the most widely used cryptography

algorithms, namely the DES and the AES. We presented

software implementations of the algorithms on both

a commodity and a the state-of-the-art Intel’s IXP network

processor and demonstrated that both the performance and

the power consumption of those realizations are

inadequate for mobile, or high-speed network terminals.

We also presented a set of 11 possible hardware implemen-

tations, five flip-flop based synchronous, four asynchronous

and two latch-based synchronous. The asynchronous

designs were designed by employing the method of

de-synchronization, whereby we replaced clock signals by

asynchronous control.

We have demonstrated that the most efficient

implementation of the DES algorithm in terms of data

bandwidth serviced and power consumed, is indeed an

asynchronous one, albeit with a limited amount of control

circuitry, i.e. a 16-stage asynchronous flip-flop-based

pipeline. This design can sustain 33.16 Gb/s of throughput

at a very modest power consumption of less than 160 mW.

For the AES the optimal realization seems to be a

latch-based one, which although is optimized for high

performance, it consumes a modest amount of power.
References

[1] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, S. Marchesi,

Efficient Software Implementation of AES on 32-Bit Platforms, in:

Proceedings of Cryptographic Hardware and Embedded Systems

(CHES’02), 2002. pp. 159–171.

[2] E. Biham, A Fast New DES Implementation in Software, in: Fast

Software Encryption, Fourth International Workshop, FSE’97, Haifa,

Israel, January 20–22, Proceedings, Volume 1267 of Lecture Notes in

Computer Science, Springer, 1997, pp. 260–271.



I. Papaefstathiou et al. / Microprocessors and Microsystems 28 (2004) 561–571 571
[3] Cadence Design Systems. Envisia Silicon Ensemble Place-and-Route

Reference.

[4] A. Elbirt, W. Yip, B. Chetwynd, C. Paar, An FPGA based

performance evaluation of the AES block cipher candidate algorithm

finalists, IEEE Transactions on VLSI Systems 9 (4) (2001) 545–557.

[5] EUROPRACTICE. UMC 0.18 mm CMOS technology

documentation.

[6] M. Fomenkov, K. Keys, D. Moore, K. Claffy, Longitudinal Study of

Internet Traffic from 1998–2003, in: CAIDA Technical Report,

September 2003.

[7] B. Gladman, Implementation Experience with AES Candidate

Algorithms, in: Proceedings of Second AES Candidate Conference

(AES2), 1999.

[8] A. Hodjat, I. Verbauwhede, Minimum Area Cost for a 30 to 70 Gbits/s

AES Processor, in: Proceedings of IEEE Computer Society Annual

Symposium on VLSI Emerging Trends in VLSI Systems Design

(ISVLSI’04), 2004, p. 83.

[9] Intel, The next generation of intel IXP network processors, Intel

Technology Journal 6 (3) (2002).

[10] I. Kim, C.S. Steele, J.G.A. Koller, Fully Pipelined 700 MBytes/s DES

Encryption Core, in: Proceedings of Ninth Great Lakes Symposium

on VLSI, 1999, p. 386.

[11] M.G. Kuhn, Cipher instruction search attack on the bus-encryption

security microcontroller DS5002FP, IEEE Transactions on Compu-

ters 47 (10) (1998) 1153–1157.

[12] M. Ligthart, K. Fant, R. Smith, A. Taubin, A. Kondratyev,

Asynchronous Design Using Commercial HDL Synthesis Tools, in:

Proceedings of the International Symposium on Advanced Research

in Asynchronous Circuits and Systems, IEEE Computer Society

Press, April 2000, pp. 114–125.

[13] D.H. Linder, J.C. Harden, Phased logic supporting the synchronous

design paradigm with delay-insensitive circuitry, IEEE Transactions

on Computers 45 (9) (1996) 1031–1044.

[14] S. Morioka, A. Satoh, A 10 Gbps Full-AES Crypto Design with a

Twisted-BDD S-Box Architecture, in: Proceedings of IEEE Inter-

national Conference on Computer Design: VLSI in Computers and

Processors (ICCD’02), 2002, p. 98.
[15] C. Patterson, High Performance DES Encryption in Virtex FPGAs

Using JBits, in: Proceedings of IEEE Symposium on Field-Program-

mable Custom Computing Machines (FCCM’00), 2000, p. 113–121.

[16] A. Pfitzmann, R. Amann, More efficient software implementations of

(generalized) DES, Computers and Security 12 (5) (1993) 477–500.

[17] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-D. Legat, Efficient

uses of FPGAs for implementations of DES and its experimental

linear cryptanalysis, IEEE Transactions on Computers 52 (4) (2003)

473–482.

[18] T. Schaffer, A. Glaser, S. Rao, P. Franzon, A Flip-Chip Implemen-

tation of the Data Encryption Standard (DES), in: Proceedings of

IEEE Multi-Chip Module Conference (MCMC’97), 1997, p. 13.

[19] N. Sklavos, O. Koufopavlou, Architectures and VLSI implemen-

tations of the AES-proposal Rijndael, IEEE Transactions on

Computers 51 (12) (2002) 1454–1459.

[20] C. Sotiriou, I. Papaefstathiou, A Design-Space Exploration of

Alternative Des Implementations, in: Proceedings of 10th IEEE

International Conference on Electronics, Circuits and Systems,

(ICECS2003), December 2003, pp. 14–17.

[21] C.P. Sotiriou, Implementing Asynchronous Circuits Using a Conven-

tional EDA Tool-Flow, in: Proceedings of the 39th Design

Automation Conference, The Association for Computer Machinery,

June 2002, pp. 415–418.

[22] C.P. Sotiriou, L. Lavagno, Dc-Synchronization: Asynchronous

Circuits from Synchronous Specifications, in: Proceedings of the

International IEEE SOC Conference, September 2003.

[23] ST Microelectronics. Notes on Synthesis, Placement and Routing.

[24] F.I.P. Standard, Advanced Encryption Standard (AES), National

Institute of Standards and Technology (NIST), 2001.

[25] Synopsys, Design Analyzer Reference Manual (2000).

[26] J. Worley, B. Worley, T. Christian, C. Worley, AES Finalists on

PA-RISC and IA-64: Implementations and Performance, in: Proceed-

ings of the Third Advanced Encryption Standard (AES) Candidate

conference, 2000.

[27] K.Y. Yun, P.A. Beerel, J. Arceo, High-Performance Asynchronous

Pipeline Circuits, in: Proceedings of International Symposium on

Advanced Research in Asynchronous Circuits and Systems, IEEE

Computer Society Press, 1996.


	Design-space exploration of the most widely used cryptography algorithms
	Introduction
	Related work
	DES and AES software implementations
	DES synchronous hardware implementations
	Synchronous hardware implementations
	DES asynchronous hardware implementations
	AES hardware implementations

	Conclusions
	References


