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Abstract: A significant problem in the field of hardware security consists of hardware trojan (HT)
viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of
production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts
are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level
netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal
and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the
few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult,
based on these data, to develop robust ML-based models against HTs. In this paper, we propose a
new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS).
GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN)
algorithm and area–power analysis features from the GLN phase and synthesizes new normal and
infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets,
different in size, and developed and compared seven ML classifiers. The results demonstrate that our
new generated data sets significantly enhance the performance of ML classifiers compared with the
initial data set of Trust-HUB.

Keywords: artificial intelligence; generative learning; hardware trojan; application-specific integrated
circuit; gate-level netlists; synthesis; new generated data sets; area–power features; GAN; WCGAN

1. Introduction

Every year, more and more innovative applications based on technology are developed
and implemented in every aspect of our lives. The majority of these applications are based
on Internet of Things (IoT) devices and artificial intelligence (AI), aiming to provide us
with the ability to remotely access information and data from any device and automate
tasks. However, all these technological breakthroughs do not come without disadvantages.

IoT devices consist mainly of sophisticated Application-Specific Integrated Circuit
(ASIC)—Integrated Circuits (ICs). To reduce operating costs and facilitate mass production,
design companies frequently outsource IC fabrication to third-party foundries. This process
increases the risk of intrusion attacks in the form of hardware viruses, also known as
hardware trojans (HTs). In the field of electronics, HT viruses are a critical problem that
have the potential to become an outbreak in the coming years, presenting a significant
threat both technologically and socially.

HTs are related to unwanted modifications to circuits that occur during the pre-silicon
and post-silicon stages. Because of the complexity of modern circuits, HTs can be inserted at
any phase of IC development and remain inactive until activated by a variety of activation
mechanisms. HTs are related to total circuit collapse, unexpected IC failures and the
leakage of sensitive information [1]. Therefore, developing well-designed and efficient HT
countermeasures are of the utmost importance. The HT structure consists of an activation
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mechanism (trigger) and an effect (payload) (Figure 1). HTs remain totally silent and
via rare events or signals their triggers are activated [1], based on two logics, sequential
or combinational. Sequential HTs need a sequence of rare signals for their activation,
while the activation of combinational HTs is based on the simultaneous presence of a
combination of rare signals. Furthermore, HT attacks are grouped into two categories of
attacks, cryptographic engine and processor attacks. Cryptographic engine attacks try to
leak encrypted information through various attack mechanisms, while the general-purpose
processors aim to degrade or even to totally destroy the system via the memory, at lower
levels of the processor and kernel.
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Ideally, any unwanted alteration applied to an IC should be detected at any phase
of the pre-silicon (e.g., Design Rule Checking—DRC, and Layout vs. Schematic—LVS
checking.) and post-silicon verification stages. However, the pre- or post-silicon stage of an
IC requires the IC golden model. This information is not always available, particularly for
designs that are based on Ips that originate from mediator manufacturers. HT attacks can be
divided according to the number of phases for each stage in the circuit’s production chain at
the register transfer level (RTL), GLN, placement and routing (P&R) and graphic database
system II (GDSII) for the pre-silicon stage, as well as fabrication and testing–assembly
for the post-silicon stage (Figure 2). Depending on the targeted phase, the attacker might
obtain full access to design files and source code, or compromise computer-aided design
tools and scripts to output a modified IC representation without altering the source code.
Fabrication attacks, on the other hand, take place after tape-out and can remove or add
components via layout geometry modification, reverse engineering or IC metering.
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Machine learning (ML) [2] and deep learning (DL) [3] in particular represent a collec-
tion of algorithms for modeling patterns embedded in data. DL has become very popular,
especially in the last decade, for the development of solutions in multiple scientific fields,
the industry, bioinformatics, agriculture, etc. [4,5]. In the hardware security field, a plethora
of ML-based approaches for HT detection have been introduced in the last six years [6].
For the pre-silicon stage, these studies aim for the classification of normal and HT-infected
circuits at the GLN phase, using area and power analysis GLN features such as number of
gates, number of nets, number of multiplexers, number of flip-flops, number of cells and
number of ports, as well as total, switching and combinational power. The most frequently
used ML algorithms are support vector machine (SVM) and random forest (RF), with SVM
typically ranking as the best-performing model [7–10].

Most studies in the field of HTs utilize the public Trust-HUB [11,12] library of circuit
designs for extracting features related to both HT-free and HT-infected Ics. Utilizing the
Trust-HUB repository has three major disadvantages: since the majority of circuits are
designed for field-programmable gate arrays (FPGA), there is an imbalance between HT-
free (N = 18) and HT-infected (N = 880) circuits, the circuits do not have diversity, and
they are large in size, which means that they are easier to detect. The lack of HT-free
and diversity designs leads to the creation of imbalanced data sets and subsequently to
highly unreliable models with low generalization capacity which are incapable of detecting
small-in-size HTs. It is becoming evident that the HT detection field requires a much higher
number of circuit and diversity designs than what is already available in Trust-Hub, for
developing robust ML models. This is not an easy task, since the majority of IC designs
are protected by IP rights and will hardly ever be deposited in public repositories such as
Trust-HUB. Thus, the community will have to become creative and make the most out of
the available circuit designs from public resources.

This study aims to provide a solution to the Trust-HUB HT-free (TF) and HT-infected
(TI) circuits imbalance problem, for the first time, by developing a feature generative ap-
proach based on Generative Adversarial Networks (GANs), named GAINESIS. GAINESIS
utilizes a WCGAN model for the synthesis of new HT-free and HT-infected circuit features
from the GLN phase. GANs are mostly used in the computer vision field for generating
artificial images on various domains, such as realistic photographs of human faces [13],
textual descriptions of birds and flowers [14], reconstructing damaged photographs of hu-
man faces [15], removing rain and snow from photographs [16] and many other functions.
For the development of GAINESIS, the Design Compiler NXT tool [17] was utilized to
synthesize 880 circuits (18 TF and 862 TI) at the GLN phase based on designs deposited
in Trust-HUB. In-house-developed scripts were used to extract power and time features
and to create the original data set. Multiple ML algorithms were tested on the original data
set and the best-performing one (gradient boosting—GB) was used to further benchmark
multiple GAN flavors and select the one that was better suited to the HT detection field
(WCGAN). Based on the final GAINESIS model, new synthetic data sets of different sizes
were generated and used to train distinct GB models to assess the applicability of GANs in
the HT detection field.

2. Methodology

The development of GAINESIS was based on Python v3.6 [18] and all benchmarks
were performed on an Intel X-Series I7-7740X computer system equipped with the NVIDIA
GTX 1060 GPU. Tensorflow-GPU v1.3 [19], Keras v2.0 [20], Scikit-learn [21], the XGBoost
library [22] and Jupyter Notebook [23] environment were used to develop all of the tested
GAN and ML models.

2.1. Scheme of GAINESIS Methodology

Initially, all circuit benchmarks in Verilog format (1) were downloaded from the Trust-
HUB repository. Design Compiler NXT and the FreePDK45nm open cell library were
used to design the GLN phase of the circuits, a process also known as GLN synthesis (2).
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Subsequently, in-house scripts were developed to generate and extract area, power and
time analysis features for each of the designed GLN benchmarks (3). The initial real data
set consisted of 880 samples, 18 TF and 862 TI, and the features utilized (N = 11) were
number of ports, number of nets, number of cells, number of sequential cells, number
of references (number of multiplexers and number of gates), net switching power, total
dynamic power, combinational switching power, combinational total power, total switching
power and total power (4). For the development of our initial real-data-based data set
classifier we split our initial real data set into two sets, a training (80%, 704 samples) and
a test (20%, 176 samples) set (5 and 6). The training of the seven ML-based classifiers
was implemented based on the training set. Specifically, the seven models are based on
seven algorithms, GB [24], k-nearest neighbors (KNN) [25], logistic regression (LR) [26],
multilayer perceptron (MLP) [27], RF [28], SVM [29] and XGB [22]. It is worth mentioning
that XGB was used for the first time for the classification of HTs at the GLN phase. For
the development of each classifier, we used and combined a variety of hyperparameters
to optimize each classifier (7). For our initial real data set we selected the best-performing
classifier based on Precision, Sensitivity, Specificity and F1-score metrics (8), which was a
GB-based classifier (9).

Next, we explored our real training data set and found that TI circuits have a larger
area and consume more power compared with TF circuits (10). From the exploration
of our real data set, it became evident that the Trust-HUB initial real data set is highly
imbalanced. We postulated that GANs can be used to remedy this problem and provide
arbitrary numbers of synthetic TF and TI feature vectors for training robust ML classifiers.
Four GAN models were developed based on the vanilla GAN [30], conditional GAN
(CGAN) [31], Wasserstein GAN (WGAN) [32], and WCGAN [33] algorithms. After the
training of our four models, we optimized and evaluated them (11), and we picked the
models with the best and the worst performances (12 and 13). Next, we synthesized new
generated data sets based on our best and our worst-performing models (14 and 15). We
combined the new generated data sets from our best and worst models with the initial real
training data set to produce our mixed data sets (16 and 17).

Furthermore, we used all of the new data sets for the development and comparison of
our new GB-based classifiers (18). For the development of the new GB-based classifiers,
each of the data sets was split into two sets, a test (20%) set and a training (80%) set
(19 and 20). Again, the training of the new GB-based classifiers was implemented based
on the training sets (21) and their evaluation implemented based on the test sets. We
selected as the new improvement GB-based classifier the best-performing classifier based
on Precision, Sensitivity, Specificity and F1-score metrics (22), which was the GB-WCGAN-
Mixed-600-based classifier (23).

Our final step was to compare our initial real GB-based classifier with our new best
GB-WCGAN-Mixed-600-based classifier. Thus, we evaluated our GB-WCGAN-Mixed-600-
based classifier with our initial real test set (24). Our scheme is illustrated in Figure 3. It
needs to be mentioned that for the development of ML-based models, we used a 10-fold
cross-validation process, which was repeated 50 times on each training set. The performance
of the algorithms on the test set was implemented using a score cutoff of 0.5.

2.2. Initial Data Set Development

The process of data set development is the most critical step for the development of a
robust ML model. In this instance, the data set should consist of circuits with diverse types,
sizes and HT functions. We developed our data set by analyzing all benchmarks accessible
in the Trust-HUB benchmark library, but we were not able to meet all the requirements of
diversity in size and function through the lack of diversity in terms of the size and function
of Trust-HUB benchmarks. Our first step was to design, with the Design Compiler NXT
tool and FreePDK45nm circuit library [34], the TF and TI circuit benchmarks of Trust-HUB,
which were in Verilog form. Next, with custom scripts we extracted area, power and
time features from the design analysis produced from the Compiler NXT tool. The initial
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extracted features were 51 in number, but many produced zero or not available feature
values. So, we cleaned our data set of these features and prepared it for the development
of our method. As a result, our data set consisted of 11 features: five area and six power
analysis features (Table 1). Specifically, the five area features were the number of ports, nets,
cells, and sequential cells, as well as the number of gates and multiplexers, or according to
the Design Compiler NXT the number of references, which is how we report it in this study.
The six power features were the net switching power, combinational switching power,
total switching power, total dynamic power, combinational total power, and total power
of each designed circuit. So, our initial real data set consisted of a total of 880 designed
circuits. From the 880 circuits, 18 were normal or TF circuits which consisted of positive
samples with a class label equal to one (label = 1). The 862 were modified normal circuits
infected with HTs or TI, which consisted of negative samples with a class label equal to
zero (label = 0). It must be mentioned that we named our initial real data set the REAL-880
data set. So, our initial REAL-880 data set consisted of a total of 880 designed samples.
From the 880 samples, 18 were TF and 862 were TI. For the training, we used 704 samples,
14 TF and 690 TI (80%), and for the evaluation 176 samples, 4 TF and 172 TI (20%).
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2.3. Machine Learning Classifiers Development

To be able to develop our ML-based classifier for our REAL-880 data set we trained and
optimized seven ML-based classification models. We based this method on our previous
work [10] where we developed six ML-based classifiers for the classification of TF and
TI circuits via area and power analysis features in the GLN phase, with the difference
that in this study we used an extra ML algorithm, the XGB. It must be mentioned that for
the training and optimization of each classifier we used a combination of the appropriate
hyperparameters based on each ML-based algorithm, which consisted of a wide range of
values. The values given in each parameter were related to the type and size of the features
of the training set, as well as to the computing power of our system.
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Table 1. Table with our eleven area and power analysis features.

Analysis Feature

Area

Number of ports
Number of nets
Number of cells

Number of sequential cells
Number of references

Power

Net switching power
Total dynamic power

Combinational switching power
Combinational total power

Total switching power
Total power

2.3.1. GB-Based Classifier

GB-based classifier development is based on the combination of four hyperparameters:
learning rate, max tree depth, number of estimators and max features. The hyperparameter
learning rate controls the gradient descent by evaluating the contribution of each tree to the
final result. For the training of our GB-based classifier we used a list of learning rate values
from 0.05 to 1. The number of estimators hyperparameter represents the total number of
sequential trees to be modeled. We used a list of the number of estimators, with values
from 10 to 100. The max tree depth hyperparameter controls the depth of the individual
trees. We used a list of max tree depth values from 1 to 10. Furthermore, the max features
parameter represents the number of features that will be used for the best split. A list of
max features values from 1 to 11 was used. The best combination of hyperparameters for
our REAL-880 data set was: learning rate 0.05, number of estimators 10, max tree depth 11
and max features 10.

2.3.2. KNN-Based Classifier

For the development of our KNN-based classifier, we used five hyperparameters:
number of neighbors, distances, leaf size, weights and metrics. The number of neighbors
hyperparameter is the core deciding factor. For this hyperparameter, we used a list of
values from 1 to 60. Distances were used in order for the KNN classifier to be able to
calculate the distances between the point and points in the training set. On this occasion,
we used a list of distance values from 1 to 10. The leaf size parameter defines the maximum
number of points a node can hold. We used a list of leaf size values from 1 to 50. The
weights parameter gives more weight to the points which are nearby and less weight to the
points which are farther away. The uniform and distance weights were used for the training
and optimization of our KNN-based model. The best combination of hyperparameters
for our REAL-880 data set was: number of neighbors 1, distances 1, leaf size 1, weights
‘uniform’ and metric ‘minkowski’.

2.3.3. LR-Based Classifier

For the training and optimization of our LR-based classifier, we used four hyperparam-
eters: solver, penalty, C and max iterations. The solver hyperparameter solves optimization
problems of the LR algorithm through coordinate descent (CD) algorithms. For this pa-
rameter, we used Newton-CG [35], limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LM-BFGS) [36], library large-scale linear LIBLINEAR [37], stochastic average gradient
(SAG) [38] and SAGA [39] CD algorithms. Penalties were used to shrink the coefficients
of the less contributed variable toward zero. We used three types of penalties: l1, l2 and
elasticnet. The C parameter controls the penalty strength; we used a list of C values from
0.01 to 1000. The max iterations parameter is the maximum number of iterations taken for
the solvers to converge. A list of max iterations values from 100 to 7000 was used. The
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best combination of hyperparameters for our REAL-880 data set was: solver ‘Newton-CG’,
penalty ‘l2′, C 0.01 and max iterations 100.

2.3.4. MLP-Based Classifier

For the training optimization of our MLP-based classifier, six hyperparameters were
used: hidden layer sizes, activation, solver, alpha, max iterations and learning rate. The
hidden layer sizes parameter defines the number of hidden layers of the network. A list
of hidden layer size values from 10 to 50 was used. The activation function parameter
was used to introduce non-linearity into the output of a neuron. A neural network has
neurons that work in correspondence to weight, bias and their respective activation function.
We used four types of activation function: identity, logistic, Tanh and ReLU. The solver
parameter represents a stochastic gradient descent-based optimizer for optimizing the
parameters in the computation graph. We used LM-BFGS, SGD and Adam optimizer.
Alpha is a parameter for the regularization term, which combats overfitting by constraining
the size of the weights. A list of alpha values from 0.001 to 0.9 was used. The maximum
number of iterations parameter determines the solver. The solver iterates to this number of
maximum iterations. A list of 100–1000 values from the maximum number of iterations was
used. The learning rate parameter controls the rate of speed at which the model learns. We
used three types of learning rate: constant, adaptive and invscaling. The best combination
of hyperparameters for our REAL-880 data set was: hidden layer sizes 30, 30, 30, activation
‘ReLU’, solver ‘Adam’, alpha 0.0001, max iterations 500 and learning rate ‘constant’.

2.3.5. RF-Based Classifier

For our RF-based classifier training optimization, we used four hyperparameters:
number of estimators, max features, max depth and min sample leaf. The number of
estimators parameter defines the number of trees in the algorithm. We used a list of the
number of estimator parameter values from 100 to 5000. The max features parameter
defines the number of features to consider when looking for the best split. We used auto,
sqrt and log2 max feature values. The max depth parameter represents the depth of each
tree in the forest. The deeper the tree, the more splits it has, and it collects more information
about the data. A list of max depth values from 2 to 50 was used. The min sample leaf
parameter consists of the minimum number of samples required to be at a leaf node. We
used values from 1 to 20 for this parameter. The best combination of hyperparameters for
our REAL-880 data set was: number of estimators 200, max features ‘auto’, max depth 10
and min sample leaf 2.

2.3.6. SVM-Based Classifier

We trained and optimized our SVM-based classifier according to three hyperparame-
ters: C, gamma and kernel. The C parameter is a regularization parameter. It controls the
tradeoff between the smooth decision boundary and classifying the training points correctly.
C values from 0.0001 to 100 were used. The gamma parameter defines how far the influence
of a single training example reaches. We used scale and auto gamma values. The kernel
parameter specifies the kernel type to be used in the algorithm to improve the classification
accuracy of the classifier. We used four types of kernels: linear, polynomial, gaussian
radial basis function (RDF) and sigmoid. The best combination of hyperparameters for our
REAL-880 data set was: C 20, gamma ‘scale’ and kernel ‘poly’.

2.3.7. XGB-Based Classifier

For the training and optimization of our XGB-based classifier we used three hyperpa-
rameters: learning rate, number of estimators and max depth. The learning rate parameter
controls the gradient descent. We used a list of learning rate values from 0.05 to 1. The
number of estimators hyperparameter represents the total number of sequential trees to be
modeled. We used a list of the number of estimators values from 10 to 100. The max tree
depth hyperparameter controls the depth of the individual trees. We used a list of max tree
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depth values from 1 to 11. Furthermore, the max features parameter represents the number
of features that will be used for the best split. A list of max features values from 1 to 11 was
used. The best combination of hyperparameters for our REAL-880 data set was: learning
rate 0.25, number of estimators 60 and max depth 5.

2.4. Machine Learning Classifiers Evaluation

In this study, for the evaluation of the performance of ML algorithms we used Accuracy,
Precision, Recall or Sensitivity, Specificity, 1 − Specificity and F1-score metrics. To evaluate
the mentioned metrics, we used the values True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN). The TP value represents the number of TI circuits
classified as TI, while the FP value represents the number of TF circuits that are wrongly
classified as TI. On the other hand, the FN value represents the TI circuits that are classified
as TF, and the TN value represents the number of TF circuits classified as TF. These values
are used for the calculation of Accuracy (1), Precision (2), Recall (3), Specificity (4), 1 −
Specificity (5) and F1 (6) metrics. As mentioned, positive samples indicate the TI circuits
and our negative samples indicate the TF circuits. Accuracy is defined as the number of
correct predictions divided by the total number of predictions (1). Precision defines the total
number of TP values divided by the total number of all positive values (2). Recall defines
the total number of TP values divided by the total number of TP and FN values (3) and can
be characterized as the True Positive Rate (TPR). Specificity defines the total number of TN
values divided by the total number of TN and FP values (4) and can be characterized as the
True Negative Rate (TNR). 1 − Specificity defines the total number of FP values divided by
the total number of TN and FP values (5). F1-score is the harmonic mean of Precision and
Recall and is defined from the multiplication of Precision by Recall and then by the number
two divided by the product of Precision and Recall (6). Additionally, based on these metrics
we produced the receiver operating characteristic (ROC) and Precision–Recall curves. The
ROC curve calculates the area under the curve (AUC) which is the measure of the ability
of a classifier to distinguish between classes and is used as a summary of the ROC curve,
while average precision (AP) summarizes a Precision–Recall curve as the weighted mean
of the precisions achieved at each threshold (7).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

1 − Specificity = FP/(TN + FP) (5)

F1-score = 2(Precision * Sensitivity)/(Precision + Sensitivity) (6)

AP = ∑n[(Rn − R(n − 1)) * Pn] (7)

From Figure 4, it can be observed that for the training set all classifiers had a good per-
formance. On the other hand, for the test evaluation set, none of our classifiers performed
well. Specifically, the GB-based classifier was found to be the best-performing classifier on
the test set compared with the other six, with 97.72% Accuracy, 74.13% Precision, 62.20%
Recall and 66.08% F1-score (Figure 5). Additionally, good results were returned for MLP-
based classifier, with 96.59% Accuracy, 61.92% Precision, 61.62% Recall and 61.62% and
F1-score 61.92%. Thus, according to the results, the GB-based classifier was the most
efficient. Based on the GB algorithm, we developed and compared our real and our new
generated data sets.
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2.5. GAINESIS Development

Our first step for the development of our new synthetic data sets based on our genera-
tive models was to explore our real training data set. As previously mentioned, the TI class
consists of 98% of our total initial real training data set, with 704 samples, and the TF class
only 2%, with 14 samples. From the exploration of our real training data set, we observed
that TI samples in their majority had greater mean values compared with TF. This is logical,
because TI circuits are modified TF circuits with HTs and use extra area features such as
gates, cells, nets, etc., for the construction of the structure of the inserted HT. On the other
hand, these extra area features need more power. Thus, TI circuits consume more power
from TF (Figure 6).

As it turns out, our real training data set is inadequate and unequal. The data are
the most significant part of any ML project. A lack of data samples and lack of diversity
data can lead to mediocre ML projects. Additionally, supervised learning models require
data, and their performance is largely based on the size of the training data available.
So, to solve these functional problems, we needed to produce more TF samples. In the
bibliography exist different techniques for data synthesis on ML. In our study, we used
a novel state-of-the-art technique for data-synthesis-based DL, known as GANs. GANs
algorithms mainly are used for the field of computer vision and especially for image editing
and data generation, and use 2D or 3D (two- or three-dimensional) networks based on
convolutional neural networks (CNNs). In this study, we modified the networks to 1D
(one-dimensional) networks based on deep neural networks (DNNs), because our data set
consisted of 1D features.



Electronics 2022, 11, 245 10 of 23

Electronics 2022, 10, x FOR PEER REVIEW 10 of 24 
 

 

Our first step for the development of our new synthetic data sets based on our gen-
erative models was to explore our real training data set. As previously mentioned, the TI 
class consists of 98% of our total initial real training data set, with 704 samples, and the TF 
class only 2%, with 14 samples. From the exploration of our real training data set, we ob-
served that TI samples in their majority had greater mean values compared with TF. This 
is logical, because TI circuits are modified TF circuits with HTs and use extra area features 
such as gates, cells, nets, etc., for the construction of the structure of the inserted HT. On 
the other hand, these extra area features need more power. Thus, TI circuits consume more 
power from TF (Figure 6). 

 
Figure 6. Data distributions by feature and class. 

As it turns out, our real training data set is inadequate and unequal. The data are the 
most significant part of any ML project. A lack of data samples and lack of diversity data 
can lead to mediocre ML projects. Additionally, supervised learning models require data, 
and their performance is largely based on the size of the training data available. So, to 
solve these functional problems, we needed to produce more TF samples. In the bibliog-
raphy exist different techniques for data synthesis on ML. In our study, we used a novel 
state-of-the-art technique for data-synthesis-based DL, known as GANs. GANs algo-
rithms mainly are used for the field of computer vision and especially for image editing 
and data generation, and use 2D or 3D (two- or three-dimensional) networks based on 
convolutional neural networks (CNNs). In this study, we modified the networks to 1D 
(one-dimensional) networks based on deep neural networks (DNNs), because our data set 
consisted of 1D features. 

Figure 6. Data distributions by feature and class.

To solve these functional problems which occurred from the lack of data samples, we
developed and compared four generative learning models. As mentioned, we developed
four models based on four different algorithms, GAN, CGAN, WGAN and WCGAN, for
the synthesis of new samples. Specifically, GANs consists of two models, a generator and a
discriminator. These are trained simultaneously by an adversarial process. The generator
learns to produce data that look real based on real samples, while the discriminator learns
to distinguish the real from generated data to the point where it is no longer able to
distinguish them. CGANs is an architecture close to the original GANs, with the only
difference being that it makes use of the class labels feature. CGAN, with the use of
the class labels feature, allows the targeted synthesis of a given sample. WGANs are
based on the philosophy of GANs, with the difference that they use the Wasserstein
distance metric for the development of the two models, generator and discriminator.
The Wasserstein distance metric provides a meaningful and smooth representation of the
distance between distributions. This algorithm enhances model stability during training
and gives a loss function that corresponds with sample quality. The last algorithm which
was used and compared for the generation of new samples was the WCGAN. WCGANs
have the same functionality as the WGANs, with the difference that the CGANs make
use of the class labels feature for the training of the generator and discriminator models.
Next, the hyperparameters that were used to improve the development of our four models
are presented.

For the development of our four models, we used and combined six hyperparameters:
learning rate, batch size, number of epochs, optimizer, number of units in a dense layer
and activation function. Each hyperparameter contained a wide range of values. The
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hyperparameter learning rate controls the model in response to the estimated error each
time the model weights are updated. On this occasion, we used a list of learning rate values
from 0.0001 to 0.001. The hyperparameter batch size defines the number of samples that
will be propagated through the network. We used a list of batch size values from 16 to 64.
The number of epochs hyperparameter specifies the time in which the learning algorithm
will process the whole training data set. We used different number of epochs values from
1000 to 50,000. The optimizer hyperparameter affects the attributes of the neural network
such as weights and learning rate to reduce the losses. For the development of our models,
we used three optimizers: stochastic gradient descent (SGD) [40], Adam [41] and root mean
square propagation (RMSprop) [42]. The number of units in a dense layer hyperparameter
affects the effectiveness of our models. On this occasion, we used different numbers of units
in a dense layer, from 25 to 512. The activation function hyperparameter describes how
the weighted sum of the input is turned into an output from a node or nodes in a network
layer. Specifically, we used three activation functions: rectified linear unit (ReLU) [43],
sigmoid [44] and hyperbolic tangent (Tanh) [45] (Table 2).

Table 2. Table with the range of hyperparameters for the generative learning models.

Hyperparameter Range

Learning rate 0.0001–0.001
Batch size 16–64

Number of epochs 1000–50,000
Optimizers SGD, Adam, RMSprop
Dense layer 25–512

Activation function ReLU, sigmoid, Tanh

So, as mentioned for the development of our four models we combined all the values
of each hyperparameter. The optimum hyperparameters combination was learning rate
equal to 0.0005, batch size equal to 64, number of epochs equal to 50,000, optimizer being
Adam, number of units in a dense layer equal to 128 for the first layer, and activation
function being ReLU. It should be noted that for the development of the generator network
for each layer, we multiplied exponentially by the number two the number of units in a
dense layer, for the discriminator network we multiplied by number four the first dense
layer, and for the other layers we divided it by the number two. Additionally, for the first
three dense layers of the generator, the best activation function was ReLU, the same as for
the discriminator, except for the last fourth dense layer of the discriminator network, in
which the best activation function was sigmoid. The values given in each parameter were
related to the type and size of the features of the training set, as well as to the ability of the
computing power of our system.

In Tables 3 and 4 is presented the generator network for each of our four models. GAN-
and WGAN-based models are different from CGAN and WCGAN because, as previously
mentioned, CGAN- and WCGAN-based models use as an extra feature the class of the
sample. Additionally, in Tables 5 and 6 is presented the discriminator network for each of
our four models. The only difference between our models is in the input layer, because
CGAN- and WCGAN-based models, as previously mentioned, use as an extra feature the
class of the sample.

Table 3. GAN and WGAN models generator network.

Layer Output Parameters

Input layer 1 (None, 11) 0
Dense 1 (None, 128) 1536
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643
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Table 4. CGAN and WCGAN models generator network.

Layer Output Parameters

Input layer 1 (None, 11) 0
Input layer 2 (None, 1) 0

Concatenate 1 (None, 12) 0
Dense 1 (None, 128) 1664
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643

Concatenate 1 (None, 12) 0

Table 5. GAN and WGAN models discriminator network.

Layer Output Parameters

Input layer 1 (None, 11) 0
Dense 1 (None, 512) 6144
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129

Table 6. CGAN and WCGAN models discriminator network.

Layer Output Parameters

Input layer 1 (None, 12) 0
Dense 1 (None, 512) 6656
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129

2.6. GAINESIS Evaluation

To evaluate the performance of our models, we used metrics such as the Minmax
and Wasserstein loss functions. Specifically, the Minmax loss function reflects the distance
between the distribution of the generated data and the distribution of the real data, for GAN-
and CGAN-based models. GAN and CGAN algorithms use two Minmax loss functions,
one for the generator and one for the discriminator. A single measure of distance between
probability distributions yields both generator and discriminator losses. The generator can
only change one component of the distance measure in any of these schemes, the term
that represents the distribution of the fake. As a consequence, we eliminate the other term
that reflects the distribution of the actual data during generator training. The formula for
minmax loss is presented in Equation (8). D(x) estimates the probability that the real data
instance x is real for the discriminator. Ex is the expected value over all real data instances.
G(z) is the output of the generator when given noise z. D(G(z)) estimates the probability
that a fake instance is real for the discriminator. Ez is the expected value over all generated
fake instances G(z)). For the evaluation of a model in WGAN and WCGAN algorithms, the
discriminator does not classify instances but outputs a number. The discriminator aims to
increase the output for real instances rather than fake instances. For this reason, we use
the Wasserstein Discriminator Loss (9) and Generator Loss (10). Specifically, D(x) is the
output for a real instance at the discriminator. G(z) is the output when given noise z, at the
generator. D(G(z)) is the output for a fake instance at the discriminator.

Minmax Loss = Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (8)

Wasserstein Discriminator Loss = D(x) − D(G(z)) (9)

Wasserstein Generator Loss = D(G(z)) (10)
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From our four generative learning models, our WCGAN-based model was found
to be the best-performing model in epoch 47,000 of 50,000 epochs, with a generator loss
value equal to 0.102 (Figure 7) and discriminator loss value equal to 0.0984 (Figure 8).
The next best-performing model was our WGAN-based model for epoch 47,000 from
50,000 epochs, with a generator loss value equal to 0.0995 (Figure 7) and discriminator loss
value equal to 0.114 (Figure 8), while our CGAN-based model’s best epoch was 48,000
from 50,000 epochs, with a generator loss value equal to 0.369 (Figure 7) and discriminator
loss value equal to 0.263 (Figure 8). Our GAN-based model was our worst-performing
model, with the best epoch being epoch 46,000 of 50,000 epochs, and a generator loss
value equal to 0.453 (Figure 7) and discriminator loss equal to 0.273 (Figure 8). Addition-
ally, we displayed for each epoch the ability of each model to synthesize new generated
samples based on real samples according to the most important features. From this, we
observed that our best-performing WCGAN-based model (Figure 9) was able to synthe-
size better-generated samples compared with the other models and especially compared
with our worst-performing GAN-based model (Figure 10). To distinguish any differences
in the quality of the new generated samples and to confirm the evaluation of our mod-
els, we synthesized new samples based on our best-performing WCGAN-based model
and based on our worst-performing model GAN-based model in order to develop new
GB-based classifiers.

2.7. Synthesis of New Generated Data Sets

After we finished with the training, optimization, and evaluation of our four models,
we selected the best- and worst-performing models. As occurred previously, the model
that learned to synthesize new generated data similar to the real data was our WCGAN-
based model, while the model with the worst performance was our GAN-based model.
Additionally, to be able to observe any differences, we created differently sized data sets
from each model. As a result, our new generated data sets, which are based on our best-
performing WCGAN model, were named WCGAN-200, WCGAN-400 and WCGAN-600
according to the size of the sample. Additionally, our new generated data sets were based
on our worst-performing GAN model, and named GAN-200, GAN-400 and GAN-600.
Next, we mixed each new generated data set with the initial real training data set, not the
test set, to be able to evaluate our best new GB-based classifier in the real test data set. So,
our mixed data sets were WCGAN-Mixed-200, WCGAN-Mixed-400, WCGAN-Mixed-600,
GAN-Mixed-200, GAN-Mixed-400, and GAN-mixed-600. In total, we had 12 new data sets
to compare. As in the real data set, the new generated data sets’ TF circuits consisted of
positive samples, with a class label equal to one (label = 1), and TI circuits consisted of our
negative samples, with a class label equal to zero (label = 0). Additionally, as mentioned
previously, 80% of each data set was used for the training of our new GB-based models,
and 20% for the evaluation. Next, we analyzed the details of each data set and how these
were used for the training and evaluation of our new GB-based models.

As a result, our new generated data sets were six in total, three for each model and
three data sets different in sample size. WCGAN-200 and GAN-200 data sets were our data
sets smallest in sample size and consisted of 432 samples, 216 TF and 216 TI samples. A
total of 345 samples, 171 TF and 174 TI, were used for the training, and 87 samples, 45 TF
and 42 TI, were used for the evaluation of our new GB-based models. Our middle range
data sets were WCGAN-400 and GAN-400 data sets. They consisted of 864 samples: 432 TF
and 432 TI samples. A total of 691 samples, 357 TF and 334 TI samples, was used for the
training and 173 samples, 75 TF and 98 TI samples, for the evaluation of our new GB-based
classifiers. Our large-sample generated data sets were WCGAN-600 and GAN-600. These
data sets consisted of 1296 samples, 648 TF and 648 TI samples. For the training of our
new GB-based classifiers, we used 1036 samples, 523 TF and 513 TI, and for the evaluation
260 samples, 125 TF and 135 TI. Furthermore, as well as our new generated data sets, our
mixed data sets were in total six in number. WCGAN-Mixed-200 and GAN-Mixed-200
data sets each consisted of one in total from 1136 samples, 230 TF and 906 TI. From these
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908 samples, 191 TF and 717 TI were used for the training and 228 samples, 43 TF and 185 TI,
were used for the evaluation. WCGAN-Mixed-400 and GAN-Mixed-400 data sets consisted,
respectively, of 1568 samples in total, 446 TF and 1122 TI. From these 1254 samples, 359
TF and 895 TI were used as a training set and 314 samples, 91 TF and 223 TI samples
were used as an evaluation set. Our last mixed data sets were WCGAN-Mixed-600 and
GAN-Mixed-600. Each one of these data sets had in total 2000 samples, 662 TF and 1338 TI
samples. The training set consisted of 1600 samples, 544 TF and 1056 TI samples while the
evaluation set consisted of 400 samples, 122 TF and 278 TI (Figure 11). In the next section is
presented how we trained and optimized our seven classification models.
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3. Results
3.1. New Generated Data Sets Results

Our first step was to compare our six new generated data sets. So, we developed six
new GB-based classifiers, one for each data set. According to Figures 12 and 13, both for
the training and the evaluation phase, our WCGAN-based data sets enhanced even a little
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the performance of the classifiers compared with our GAN-based data sets. Specifically, the
GB-based classifiers for the evaluation phase obtained a 99.6% F1-score for our WCGAN-
200 data set, 99.86% F1-score for our WCGAN-400 data set and 99.94% F1-score for our
WCGAN-600 data set, while for our GAN-200 data set was obtained a 98.37% F1-score,
99.2% F1-score for our GAN-400 data set and 99.49% F1-score for our GAN-600 data set.
Additionally, from the above, it can be observed that the performance of the classifiers was
affected, and also by the size of the data set. Specifically, the data sets with more samples
enhanced the performance of the classifier compared with the data sets with fewer samples,
for both WCGAN-based and GAN-based data sets.
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3.2. Mixed Data Sets Results

Our next step was to compare our six mixed data sets. As previously mentioned,
mixed data sets consisted of the new generated samples from our WCGAN-based and
GAN-based generative models, respectively, and the initial real training data samples from
our REAL-880 data set. According to Figures 14 and 15 emerged the same conclusions as in
the comparison of the new generated data sets. Our best GB-classifier was the classifier
that was developed based on the WCGAN-Mixed-600 data set. Specifically, our new
mixed GB-based classifiers for the evaluation phase achieved a 95.08% F1-score for our
WCGAN-Mixed-200 data set, 97.39% F1-score for our WCGAN-Mixed-400 data set and
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98.26% F1-score for our WCGAN-Mixed-600 data set, while for our GAN-Mixed-200 data
set was obtained a 94.59% F1-score, 97.61% F1-score for our GAN-Mixed-400 data set and
98.11% F1-score for our GAN-Mixed-600 data set.
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3.3. All Data Sets Results

According to our results, our best new classifiers are based on WCGAN-Mixed-600
and GAN-Mixed-600 data sets. These newly generated data sets, in combination with
our real training data set, managed to increase the F1-score for our new best-performing
GB-based classifiers by 32.18% and 32.03%, respectively (Figure 16).

To be able to distinguish extra details between the WCGAN-Mixed-600 and GAN-
Mixed-600 data sets we used ROC and Precision–Recall curves. Each GB-based classifier
of each data set was tested with the test sets of each other. According to Figure 17, it can
be observed that our WCGAN-600 (Figure 17c,d) and WCGAN-Mixed-600 (Figure 17g,h)
data sets significantly enhanced the classification procedure compared with our GAN-600
(Figure 17e,f) and GAN-Mixed-600 data sets (Figure 17i,j). Specifically, our GB-WCGAN-
Mixed-600 classifier, compared with the GB-GAN-Mixed-600 classifier, was able to classify
with better performance 99% AUC and 99% AP for not only the GAN-Mixed-600 data set
but also the REAL-880 data set, with 75% AUC and 16% AP compared with the GB-CGAN-
Mixed-600 classifier, which obtained 70% AUC and 41% AP for the WCGAN-Mixed-600
data set and 68% AUC and only 9% AP for the REAL-880 data set. So, our new best classifier
was the GB-WCGAN-Mixed-600.
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based classifiers for the REAL-880 data set; (b) Precision–Recall curve for all the GB-based classifiers
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curve for all the GB-based classifiers for the GAN-600 data set; (f) Precision–Recall curve for all the
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3.4. Evaluation of Our Best GB-WCGAN-Mixed-600 Classifier with Our GB-REAL-880 Classifier

To evaluate the effectiveness of our new GB-WCGAN-Mixed-600 classifier, we tested
our new classifier in the test set of our REAL-880 classifier.

As a result, as shown in Figure 18, our GB-WCGAN-Mixed-600 classifier for the
REAL-880 test set performed with 98% Accuracy, 74% Precision, 74.5% Recall and 74.25%
F1-score, while the GB-REAL-880 classifier for this set performed with 97.72% Accuracy,
74.13% Precision, 62.20% Recall and 66.08% F1-score. With our new GB-WCGAN-Mixed-
600 classifier we had an 8.17% increase in the performance, which is satisfactory due to the
lack of a samples test set.

So, from the above our goal of generating new circuit samples based on area, power
and time analysis features from the GLN phase is validated, which would enhance the
development of a robust ML-based classifier, for the classification of TF and TI circuits.
Our new generated data sets, large in size, enhanced the classification of TF and TI circuits.
Specifically, throughout this process our first goal was to develop new generated data sets
to observe how significantly or not our new data sets could enhance the classification of
TF and TI circuits at GLN. Additionally, our next goal was to evaluate if our new data sets
could be used as a solution for the problem of a lack of samples, from which the field of
countermeasures against HTs suffers. The experimental results prove the achievement of
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our goals, as our new WCGAN-Mixed-600 data set managed to develop a more effective
classification model for the classification of TF and TI circuits at the GLN phase of ASICs.
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4. Conclusions

The HT detection field has been at the forefront of hardware security for the last two
decades. As the technological advancements require an ever-increasing complexity level
of ICs, the same trend can be observed in HT-based attacks, in their sophistication and
elusiveness that prevents detection at pre-silicon stages. However, the pace of advancement
has not been the same for the HT detection field, since the development of robust HT
detection methods requires abundant data in the form of HT-free and HT-infected circuits.
This major obstacle can be attributed to the lack of freely available IC designs, since the
majority of ICs are protected by IP rights. Public repositories such as Trust-HUB indeed
provide free designs; however, the supported ICs are limited both in terms of absolute
numbers and in function/size diversity.

To alleviate the imbalance problem in freely accessible IC design repositories, we
propose GAINESIS, a novel approach for generating synthetic HT-free and HT-infected
GLN feature vectors in ASICs from a WCGAN-based generative model and high-quality
area and power analysis features extracted by the Design Compiler NXT tool. Balanced
synthetic data sets of different sizes were generated and utilized to train several ML
algorithms that are frequently being applied in the HT detection field. This approach
enabled us to evaluate GAINESIS and extract results showing that our method can be
effective in generating synthetic feature vectors that can be used for training ML models,
which can generalize the original Trust-HUB test set and perform better than the models
trained on the original imbalanced data.

Even though GAINESIS is a novel approach that was able to marginally improve
(~8% in terms of F1 score) the performance of the original test set, it has the potential
to open new research avenues for the HT detection field, as it can also be applied in
other pre-silicon IC production phases such as RTL, P&R and GDSII. However, GAINESIS
cannot remedy the problem of the lack of numbers and diversity in terms of size and
function that is present in Trust-HUB and other freely accessible repositories. To have a
better understanding of GAINESIS’s ability to provide high-quality synthetic data, we
need to assemble a significantly larger and more diverse design set, and more importantly,
designs that are derived from real-world applications. For small laboratories, this is a
costly and extremely time-consuming effort. Instead, a consortium-level initiative needs to
be established where laboratories and companies from all over the world can contribute
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to this cause in a crowdsourcing fashion, with the clear purpose of generating large and
diverse datasets.

In the future, we will create our own small-in-size circuits, aiming to solve the lack of
diversity that is present in Trust-HUB, and through these circuits our GAINESIS tool will
be upgraded. In addition, we believe that a more efficient strategy for the detection and
mitigation of HT combines different techniques that complement each other. Therefore, we
will combine GAINESIS with other run-time and test-time techniques, such as the works
in [46–48]. Our GAINESIS tool is available through this link: https://caslab.e-ce.uth.gr/
ToolsandDatabases.html (accessed on 10 January 2022).
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