

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Ευφυές Υπολογιστικό Σύστημα για την Ανίχνευση

Ελαττωμάτων και Ανωμαλιών στην Ηλεκτρολογία

Διατριβή η οποία υποβλήθηκε για τη μερική εκπλήρωση των υποχρεώσεων

απόκτησης του Διδακτορικού Διπλώματος

Κωνσταντίνος Λιάκος

Μάιος 2022

iii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering

A dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Konstantinos Liakos

May 2022

v

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Ευφυές Υπολογιστικό Σύστημα για την Ανίχνευση

Ελαττωμάτων και Ανωμαλιών στην Ηλεκτρολογία

Διδακτορική Διατριβή

Κωνσταντίνος Λιάκος

Συμβουλευτική Επιτροπή

Πλέσσας Φώτιος, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Θεσσαλίας. (Επιβλέπων)

Κίτσος Παρασκευάς, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Πελοποννήσου

Leporati Francesco, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Παβία

Επταμελής εξεταστική επιτροπή
Πλέσσας Φώτιος, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Θεσσαλίας. (Επιβλέπων)

Κίτσος Παρασκευάς, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Πελοποννήσου

Leporati Francesco, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Παβία

Σταμούλης Γεώργιος, Καθηγητής, Πανεπιστήμιο Θεσσαλίας

Σωτηρίου Χρήστος, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Θεσσαλίας

Σκλάβος Νικόλας, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Πατρών

Ποταμιάνος Γεράσιμος, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Θεσσαλίας

Μάιος 2022

vii

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ

ΠΝΕΥΜΑΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω

ρητά ότι η παρούσα διδακτορική διατριβή, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι

κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της διατριβής, αποτελούν

αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν προσβάλλουν οποιασδήποτε μορφής

δικαιώματα διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων τρίτων,

δεν περιέχουν έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των

δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε που

χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον και πληρούν

τους κανόνες της επιστημονικής παράθεσης. Τα σημεία όπου έχω χρησιμοποιήσει ιδέες,

κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων αναφέρονται ευδιάκριτα στο κείμενο με

την κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται στο τμήμα των

βιβλιογραφικών αναφορών με πλήρη περιγραφή. Δηλώνω επίσης ότι τα αποτελέσματα της

εργασίας δεν έχουν χρησιμοποιηθεί για την απόκτηση άλλου πτυχίου. Αναλαμβάνω πλήρως,

ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που δύναται να

προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή

τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής.

Ο Δηλών

Κωνσταντίνος Λιάκος

ix

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering

PH.D. Dissertation

Konstantinos Liakos

Advisory Committee

Plessas Fotios, Associate Professor, University of Thessaly

Kitsos Paris, Associate Professor, University of Peloponnese

Leporati Francesco, Associate Professor, University of Pavia

Examination Committee

Plessas Fotios, Associate Professor, University of Thessaly

Kitsos Paris, Associate Professor, University of Peloponnese

Leporati Francesco, Associate Professor, University of Pavia

Stamoulis George, Professor, University of Thessaly

Sotiriou Christos, Associate Professor, University of Thessaly

Sklavos Nikolas, Associate Professor, University of Patra

Potamianos Gerasimos, Associate Professor, University of Thessaly

May 2022

xi

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY

RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this Ph.D.

dissertation, as well as the electronic files and source codes developed or modified in the

course of this dissertation, are solely the product of my personal work and do not infringe

any rights of intellectual property, personality and personal data of third parties, do not

contain work / contributions of third parties for which the permission of the authors /

beneficiaries is required and are not a product of partial or complete plagiarism, while the

sources used are limited to the bibliographic references only and meet the rules of scientific

citing. The points where I have used ideas, text, files and / or sources of other authors are

clearly mentioned in the text with the appropriate citation and the relevant complete

reference is included in the bibliographic references section. I also declare that the results of

the work have not been used to obtain another degree. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this dissertation or part of it does not belong to me because

it is a product of plagiarism.

The Declarant

Konstantinos Liakos

xiii

Ευχαριστίες

Με την ολοκλήρωση της παρούσας διδακτορικής διατριβής, θα ήθελα να ευχαριστήσω

θερμά τα άτομα που συνέβαλαν με τη συνεισφορά τους, για την ολοκλήρωση της.

Συγκεκριμένα, θέλω να ευχαριστήσω τον αγαπημένο μου εποπτεύων καθηγητή Πλέσσα

Φώτιο και τους καθηγητές Κίτσο Παρασκευά και Leporati Francesco, καθώς και τον

αγαπημένο μου φίλο δόκτωρ Γεωργακίλα Γεώργιο, για την βοήθεια και την υποστήριξη

τους καθ’ όλη την διάρκεια του διδακτορικού μου. Τέλος, θα ήθελα να ευχαριστήσω

ολόψυχα την σύζυγο μου Μαίρη, τους πολυαγαπημένους μου γονείς, τον πατέρα μου

Γεώργιο και την μητέρα μου Μαρία, τα αδέρφια μου Ειρήνη και Νικόλα και τον ανιψιό μου

Χρήστο, οι οποίοι είναι η χαρά της ζωής μου και η δύναμη μου όλα τα χρόνια και δείχνουν

την αμέριστη συμπαράστασή τους ως προς το πρόσωπό μου, τόσο στο κομμάτι των σπουδών

όσο και της ζωής και βρίσκονται πάντα δίπλα μου.

xv

Διδακτορική Διατριβή

Ευφυές Υπολογιστικό Σύστημα για την Ανίχνευση

Ελαττωμάτων και Ανωμαλιών στην Ηλεκτρολογία

Κωνσταντίνος Λιάκος

Περίληψη

Στις μέρες μας υπάρχει ανάγκη για ακόμη πιο εξελιγμένα κυκλώματα. Οι εταιρείες

σχεδιασμού, προκειμένου να μειώσουν το λειτουργικό κόστος και να διευκολύνουν τη

μαζική παραγωγή ολοκληρωμένων κυκλωμάτων, αναθέτουν την κατασκευή τους σε

τρίτους. Η διαδικασία αυτή αυξάνει τον κίνδυνο επιθέσεων εισβολής με τη μορφή ιών

υλικού, γνωστών και ως ιών δουρείου ίππου συσκευών. Οι ιοί αυτοί αποτελούν ένα

σημαντικό πρόβλημα που έχει τη δυνατότητα να εξελιχθεί σε επιδημία τα επόμενα χρόνια,

αποτελώντας σημαντική απειλή τόσο από τεχνολογική όσο και από κοινωνική άποψη.

Η πλειονότητα των μελετών αφορά την ανάπτυξη αντιμέτρων κατά των ιών δουρείου ίππου

συσκευών, για κυκλώματα συστοιχίας προγραμματιζόμενων πυλών πεδίου και

συγκεκριμένα για το στάδιο μετά το πυρίτιο. Επίσης, υπάρχουν περιορισμένες πληροφορίες

και δημοσιευμένες μελέτες για τα ολοκληρωμένα κυκλώματα ειδικής εφαρμογής και

συγκεκριμένα για το στάδιο πριν από το πυρίτιο. Τα ολοκληρωμένα κυκλώματα ειδικής

εφαρμογής αποτελούν πρόκληση λόγω της ποικιλίας των φάσεων σχεδιασμού που έχουν

και ιδίως στο στάδιο πριν από το πυρίτιο, καθώς και λόγω της ανάγκης επαγγελματικών

εργαλείων για το σχεδιασμό κάθε φάσης.

Σε αυτή τη διατριβή μελετήσαμε διάφορες φάσεις για τη διαδικασία σχεδιασμού σε

ολοκληρωμένα κυκλώματα ειδικής εφαρμογής και διαπιστώσαμε ότι υπάρχει γενική

έλλειψη σε δεδομένα από δημόσια-ελεύθερα κυκλώματα καθώς ότι υπάρχει επίσης μεγάλο

πρόβλημα ανισορροπίας μεταξύ μη μολυσμένων και μολυσμένων κυκλωμάτων.

Χρησιμοποιήσαμε και σχεδιάσαμε όλα τα περιορισμένα κυκλώματα αναφοράς, για τη φάση

επιπέδου πύλης των ολοκληρωμένων κυκλωμάτων ειδικής εφαρμογής, με ένα

επαγγελματικό εργαλείο και εξήγαμε χαρακτηριστικά ανάλυσης εμβαδού, ισχύος και

χρόνου. Αναπτύξαμε τα δικά μας μοντέλα ταξινόμησης μηχανικής μάθησης, με βάση αυτά

τα περιορισμένα δεδομένα και παρατηρήσαμε ότι η έλλειψη δειγμάτων οδηγεί στην

xvi

ανάπτυξη ανισόρροπων και μη ισχυρών μελετών ταξινόμησης που βασίζονται σε μηχανική

μάθηση, για την αντιμετώπιση των ιών δουρείου ίππου συσκευών. Επιλύσαμε το πρόβλημα

των περιορισμένων δεδομένων με την ανάπτυξη των δικών μας μοντέλων βαθιάς μάθησης

- γενετικών αντιθετικών δικτύων, τα οποία ήταν σε θέση να συνθέσουν νέα παραγόμενα

δεδομένα με βάση τα πραγματικά περιορισμένα δεδομένα μας. Τα γενετικά αντιθετικά

δίκτυα είναι νέοι αλγόριθμοι βαθιάς μάθησης που χρησιμοποιούνται στον τομέα της

υπολογιστικής όρασης, για τη δημιουργία τεχνητών εικόνων. Ήταν η πρώτη φορά που

χρησιμοποιήθηκαν γενετικά αντιθετικά δίκτυα σε αυτό το ερευνητικό πεδίο. Έτσι, με βάση

τα νέα παραγόμενα δεδομένα μας αναπτύξαμε έναν ισχυρό ταξινομητή βασισμένο σε

μηχανική μάθησης, ως αντίμετρο κατά των ιών δουρείου ίππου συσκευών για την φάση

επιπέδου πυλών και τον συγκρίναμε με υπάρχουσες μεθόδους για αυτή την φάση. Τέλος,

μετατρέψαμε το παραγωγικό μας μοντέλο σε ένα ελεύθερο εργαλείο προκειμένου να

χρησιμοποιηθεί ως λύση για την αντιμετώπιση του περιορισμένου αριθμού δεδομένων.

Λέξεις-κλειδιά:

Ασφάλεια υλικού, ολοκληρωμένα κυκλώματα, ολοκληρωμένα κυκλώματα ειδικής εφαρμογής, ιοί

δουρείου ίππου συσκευών, αντίμετρα, τεχνητή νοημοσύνη, μηχανική μάθηση, μάθηση σε βάθος,

παραγωγική μάθηση, παραγωγικά αντιφατικά δίκτυα, προ πυριτίου στάδιο, φάση επιπέδου πύλης

xvii

Ph.D. Dissertation

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering
Konstantinos Liakos

Abstract

In our days there is a need for even more and more sophisticated circuits. The design

companies to reduce the operating costs and facilitate mass production of integrated circuits,

outsource their fabrication to third-party foundries. This process increases the risk of

intrusion attacks in the form of hardware viruses, also known as hardware trojans (HTs)

viruses. HTs viruses are a critical problem that has the potential to become an outbreak in

the coming years, presenting a significant threat both technologically and socially.

The majority of the studies are concerned with the development of countermeasures against

HTs for Field-Programmable Gate Array (FPGA) circuits at the post-silicon stage. Also,

there is limited information and published studies for the Application-Specific Integrated

Circuits (ASICs) and specifically for the pre-silicon stage. ASICs are challenging due to the

variety of design phases especially on the pre-silicon stage and for the need for professional

tools for the design of each phase.

In this thesis, we studied several phases for the design process on ASICs and we found that

there is a general lack of free benchmark circuits and also there is a high imbalance problem

between uninfected and infected benchmark circuits. We used and designed all the limited

benchmark circuits for the Gate-Level Netlist (GLN) phase of ASICs with a professional

tool and extracted area, power and time analysis features. We developed our Machine

Learning (ML) classification models based on this limited data and we observed that the lack

of samples leads to the development of imbalanced and no robust ML-based classification

approaches against HTs viruses. We solved the problem of the limited data with the

development of our Deep Learning (DL) - Generative Adversarial Networks (GANs) models

which were able to synthesize new generated data based on our real limited data. GANs are

novel DL algorithms that are used in the computer vision field for generating artificial

images and it was the first time that GANs were used in this research field. Based on our

xviii

new generated data we developed a robust ML-based classifier as a countermeasure against

HTs at the GLN phase and compared it with existing methods. Finally, we turned our

generative model into a free tool to be used as a solution for dealing with the limited number

of data.

Keywords:

Hardware security, integrated circuits, application-specific integrated circuits, hardware trojan

viruses, countermeasures, artificial intelligence, machine learning, deep learning, generative

learning, generative adversarial networks, pre-silicon stage, gate-level netlist phase

xix

Πίνακας περιεχομένων

Περίληψη .. xv

Abstract ... xvii
Πίνακας περιεχομένων .. xix

Κατάλογος εικόνων .. xxiii
Κατάλογος πινάκων .. xxvii
Συντομογραφίες ... xxix

Chapter 1 Introduction ... 1

1.1 Motivation and Structure of the Dissertation.. 3

 Background ... 5

2.1 Integrated Circuits Supply Chain .. 5

2.2 Hardware Trojan Structure .. 6

2.3 Hardware Trojan Models.. 6

2.4 Hardware Trojan Attacks ... 7

2.5 Hardware Trojan Taxonomy .. 7

2.6 Challenges Against Hardware Trojan ... 8

 An Overview on Artificial Intelligence ... 9

3.1 Introduction .. 9

3.2 Artificial Intelligence Term ... 9

3.3 Machine Learning Term ... 9

3.4 Deep Learning Term.. 10

3.5 Tasks of Learning .. 10
3.5.1 Supervised Learning ... 10
3.5.2 Unsupervised Learning ... 11
3.5.3 Semi-supervised Learning... 12

3.6 Types of Learning Models ... 12
3.6.1 Artificial Neural Networks Models ... 12
3.6.2 Bayesian Models ... 13
3.6.3 Clustering Models ... 14
3.6.4 Computer Vision Models .. 14
3.6.5 Decision Trees Models ... 14
3.6.6 Deep Neural Networks Models ... 15
3.6.7 Dimensionality Reduction Models .. 16
3.6.8 Ensemble Learning Models .. 16
3.6.9 Generative Learning Models ... 17
3.6.10 Instance Based Models ... 17
3.6.11 Natural Language Processing Models ... 18
3.6.12 Regression Models .. 18
3.6.13 Regularization Models .. 19
3.6.14 Speech Recognition Models .. 19

 Countermeasures Against Hardware Trojans ... 21

xx

4.1 Introduction .. 21

4.2 Historical Throwback .. 21

4.3 Categorization of Studies .. 22

4.4 Distribution of the most Contributing Journal Studies .. 23

4.5 Studies Trend ... 25

4.6 SCA-based Approaches ... 26
4.6.1 SCA-based Power Analysis Approaches .. 26
4.6.2 SCA-based Time Analysis Approaches .. 28
4.6.3 SCA-based Approaches Conclusions .. 28

4.7 ML and Simulation based Approaches .. 30
4.7.1 Logic Testing Simulation Approaches .. 30
4.7.2 ML-based Approaches .. 31
4.7.3 ML and Simulation based Approaches Conclusions ... 35

4.8 Auxiliary Approaches .. 37
4.8.1 Runtime Monitoring Approaches .. 38
4.8.2 Prevention & Facilitation Approaches .. 39
4.8.3 Auxiliary Approaches Conclusions ... 40

4.9 Countermeasures Against Hardware Trojans Conclusions ... 42

 GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS 45

5.1 Introduction .. 45

5.2 Scheme of GAINESIS Methodology ... 46

5.3 Data set .. 48
5.3.1 Initial Data Set Development .. 49

5.4 Machine Learning Classifiers Development .. 51
5.4.1 GB-based Classifier .. 52
5.4.2 KNN-based Classifier ... 53
5.4.3 LR-based Classifier ... 55
5.4.4 MLP-based Classifier .. 56
5.4.5 RF-based Classifier ... 58
5.4.6 SVM-based Classifier ... 59
5.4.7 XGB-based Classifier ... 61

5.5 Machine Learning Classifiers Evaluation.. 62

5.6 GAINESIS Development ... 64
5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms ... 66

5.7 GAINESIS Evaluation ... 69

5.8 Synthesis of New Generated Data Sets ... 72

5.9 New Generated GB-based Classifiers Development ... 74

5.10 Mixed GB-based Classifiers Development ... 76

 Results .. 79

6.1 New Generated Data Sets Results .. 79

6.2 Mixed Data Sets Results .. 80

6.3 All Data Sets Results .. 81

6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-880
Classifier ... 84

xxi

6.5 Comparison to Existing Methods ... 85

 Conclusions and Future Work ... 89

References ... 91

xxiii

Κατάλογος εικόνων

Figure 2.1 IC supply chain and HTs insertion in pre- and post-silicon stages 6

Figure 2.2 Hardware Trojan structure ... 6

Figure 2.3 Concept graph presenting (A) combinational and (B) sequential model logics .. 7

Figure 3.1 ML & DL algorithms history timeline ... 20

Figure 3.2 Artificial intelligence vs machine learning vs deep learning 10

Figure 3.3 Supervised learning .. 11

Figure 3.4 Unsupervised learning .. 12

Figure 3.5 Semi-supervised learning ... 12

Figure 3.6 Artificial neural networks model ... 13

Figure 3.7 Bayesian model .. 13

Figure 3.8 Clustering model .. 14

Figure 3.9 Computer vision model .. 14

Figure 3.10 Decision trees model .. 15

Figure 3.11 Deep neural networks model .. 15

Figure 3.12 Dimensionality reduction model .. 16

Figure 3.13 Ensemble learning model ... 17

Figure 3.14 Generative learning model ... 17

Figure 3.15 Instance based model ... 18

Figure 3.16 Natural language processing model ... 18

Figure 3.17 Regression model ... 19

Figure 3.18 Regularization model ... 19

Figure 3.19 Speech recognition model .. 20

Figure 4.1 Categorization of countermeasures approaches against HTs 21

Figure 4.2 History timeline for countermeasures against HTs .. 22

Figure 4.3 Categorization of studies .. 23

Figure 4.4 Categorization of studies per sub-categories ... 23

Figure 4.5 Geographical distribution of the contribution of each country to the research

field focusing on countermeasures against HTs viruses. ... 24

Figure 4.6 Distribution of the international journals and conferences and concerning

applications of studies per sub-categories. .. 25

xxiv

Figure 4.7 Countermeasures trend ... 26

Figure 4.8 Number of studies in SCA-based approaches category 29

Figure 4.9 Benchmark in SCA-based approaches category .. 29

Figure 4.10 Features types in SCA-based approaches category .. 30

Figure 4.11 Number of studies in ML and Simulation based approaches category 36

Figure 4.12 Benchmark in ML and Simulation based approaches category 36

Figure 4.13 Features types in ML and simulation-based approaches category. 37

Figure 4.14 Number of studies in Auxiliary based approaches category 41

Figure 4.15 Benchmark in Auxiliary based approaches category 41

Figure 4.16 Features types in Auxiliary based approaches category 42

Figure 4.17 Number of studies for all the categories .. 43

Figure 4.18 Benchmark for each countermeasure category .. 44

Figure 4.19 Features types for each countermeasure category .. 44

Figure 5.1 Steps for the development of an ML or DL-based model 46

Figure 5.2 Scheme of our Artificial Intelligence-based approach for safeguarding

integrated circuits at gate-level netlist phase against hardware Trojans, GAINESIS. 48

Figure 5.3 GB algorithm .. 52

Figure 5.4 Feature importance for GB-REAL-880 classifier .. 53

Figure 5.5 KNN algorithm .. 54

Figure 5.6 LR algorithm .. 55

Figure 5.7 MLP algorithm ... 57

Figure 5.8 RF algorithm .. 59

Figure 5.9 SVM algorithm .. 60

Figure 5.10 Histograms of the performance of our seven ML models on our REAL-880

training set ... 64

Figure 5.11 Histograms of the performance of our seven ML models on our REAL-880 test

set ... 64

Figure 5.12 Data distributions by feature and class .. 65

Figure 5.13 Generator loss values of our four models for each epoch 70

Figure 5.14 Discriminator loss values of our four models for each epoch 71

Figure 5.15 Presentation of how our best-performing WCGAN-based model learned to

synthesize new generated samples based on real samples .. 71

Figure 5.16 Presentation of how our worst-performing GAN-based model learned to

synthesize new generated samples based on real samples .. 72

xxv

Figure 5.17 Histograms with the distribution of TF and TI samples for our 13 data sets ... 74

Figure 5.18 Concept graph presenting the most importance features: (a) GB-WCGAN-200

classifier; (b) GB-GAN-200 classifier; (c) GB-WCGAN-400 classifier; (d) GB-GAN-400

classifier; (e) GB-WCGAN-600 classifier; (f) GB-GAN-600 classifier 76

Figure 5.19 Concept graph presenting the most importance features: (a) GB-WCGAN-

Mixed-200 classifier; (b) GB-GAN-Mixed-200 classifier; (c) GB-WCGAN-Mixed-400

classifier; (d) GB-GAN-Mixed-400 classifier; (e) GB-WCGAN-Mixed-600 classifier; (f)

GB-GAN-Mixed-600 classifier ... 77

Figure 6.1 Histograms of the performance of our new GB-based classifiers on our new

generated training sets. .. 79

Figure 6.2 Histograms of the performance of our new GB-based classifiers on our new

generated test sets. ... 80

Figure 6.3 Histograms of the performance of our new GB-based classifiers on our mixed

training sets. ... 81

Figure 6.4 Histograms of the performance of our new GB-based classifiers on our mixed

test sets. .. 81

Figure 6.5 Histograms of the performance of our 13 GB-based classifiers on our 13 test

sets. .. 82

Figure 6.6 Concept graph presenting ROC and Precision-Recall curves: (a) ROC curve for

all the GB-based classifiers for the REAL-880 data set; (b) Precision–Recall curve for all

the GB-based classifiers for the REAL-880 data set; (c) ROC curve for all the GB-based

classifiers for the WCGAN-600 data set; (d) Precision–Recall curve for all the GB-based

classifiers for the WCGAN-600 data set; (e) ROC curve for all the GB-based classifiers for

the GAN-600 data set; (f) Precision–Recall curve for all the GB-based classifiers for the

GAN-600 data set; (g) ROC curve for all the GB-based classifiers for the WCGAN-Mixed-

600 data set; (h) Precision–Recall curve for all the GB-based classifiers for the WCGAN-

Mixed-600 data set; (i) ROC curve for all the GB-based classifiers for the GAN-Mixed-

600 data set; (j) Precision–Recall curve for all the GB-based classifiers for the GAN-

Mixed-600 data set .. 84

Figure 6.7 Histograms of the performance of our new best-performing GB-WCGAN-

Mixed-600 classifier compared with our GB-REAL-880 classifier on the REAL-880 test

set. .. 85

Figure 6.8 Histograms with the performance comparison between existing approaches and

our approach ATLAS. ... 86

xxvi

xxvii

Κατάλογος πινάκων

Table 4.1 Summary of approaches in SCA-based power analysis 27

Table 4.2 Summary of approaches in SCA-based time analysis ... 28

Table 4.3 Summary of LT simulation approaches. ... 31

Table 4.4 Summary of ML-based approaches ... 33

Table 4.5 Summary of RM approaches ... 38

Table 4.6 Summary of PF approaches ... 40

Table 5.1 Table with our eleven area and power analysis features 50

Table 5.2 Table with the range of hyperparameters for the GB-REAL-880 classifier 53

Table 5.3 Table with the range of hyperparameters for the KNN-REAL-880 classifier 55

Table 5.4 Table with the range of hyperparameters for the LR-REAL-880 classifier 56

Table 5.5 Table with the range of hyperparameters for the MLP-REAL-880 classifier 58

Table 5.6 Table with the range of hyperparameters for the RF-REAL-880 classifier 59

Table 5.7 Table with the range of hyperparameters for the SVM-REAL-880 classifier 61

Table 5.8 Table with the range of hyperparameters for the XGB-REAL-880 classifier 62

Table 5.9 Table with the range of hyperparameters for the generative learning models 67

Table 5.10 GAN and WGAN models generator network ... 68

Table 5.11 CGAN and WCGAN models generator network .. 68

Table 5.12 GAN and WGAN models discriminator network ... 69

Table 5.13 CGAN and WCGAN models discriminator network .. 69

Table 5.14 Table with the range of hyperparameters for the new generated GB-based

classifiers ... 75

Table 5.15 Table with the best values of hyperparameters for the mixed GB-based

classifiers ... 76

Table 6.1 Table with the comparison of our method with existing methods for the same

benchmark ... 87

xxix

Συντομογραφίες

Application-Specific Integrated Circuit ASIC
Area Under Curve AUC
Artificial Intelligence AI
Artificial Neural Networks ANNs
Average Precision AP
Bayesian Models BM
Computer Process Unit CPU
Computer vision CV
Conditional Generative Adversarial Networks CGANs
Convolutional Neural Networks CNNs
Coordinate Descent CD
Decision Trees DT
Deep Learning DL
Deep Neural Networks DNNs
Dimensionality Reduction DR
Electronic Design Automation EDA
Ensemble Learning EL
False Negative FN
False Positive FP
Field-Programmable Gate Arrays FPGA
Gate Level Netlist GLN
Generative Adversarial Networks GANs
Generative Artificial Intelligence NEtlists SynthesIS GAINESIS
Generative Learning GL
Gradient Boosting GB
Graphic Database System II GDSII
Graphic Process Unit GPU
hArdware Trojan Learning AnalysiS ATLAS
Hardware Trojans HTs
Instance Based IB
Integrated Circuits ICs
Intellectual Property IP
Internet of Things IoT
K-Nearest Neighbors KNN
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno LM-BFGS
Logic Testing LT
Logistic Regression LR
Machine Learning ML
Multilayer Perceptron MLP
Natural Language Processing NLP
Placement & Routing P&R
Prevention-Facilitation PF
Random Forest RF
Receiver Operating Characteristic ROC
Rectified Linear Unit ReLU

xxx

Register Transfer Level RTL
Root Mean Square propagation RMSprop
Runtime Monitoring RM
Side Channel Analysis SCA
Speech Recognition SR
Stochastic Average Gradient SAG
Stochastic Gradient Descent SGD
Support Vector Machine SVM
Tangent Tanh
Trojan-Free TF
Trojan-Infected TI
True Negative Rate TNR
True Negative TN
True Positive Rate TPR
True Positive TP
Wasserstein Conditional Generative Adversarial Network WCGAN
Wasserstein Generative Adversarial Networks WGAN
Xtreme Gradient Boosting XGB

Chapter 1 Introduction

Every year, more and more innovative applications based on technology are developed and

implemented in every aspect of our lives. The majority of these applications are based on

Internet of Things (IoT) devices and Artificial Intelligence (AI), aiming to provide us with

the ability to remotely access information and data from any device and automate tasks.

However, all these technological breakthroughs do not come without disadvantages.

IoT devices consist mainly of sophisticated Application-Specific Integrated Circuit

(ASIC)—Integrated Circuits (ICs). To reduce operating costs and facilitate mass production,

design companies frequently outsource IC fabrication to third-party foundries. This process

increases the risk of intrusion attacks in the form of hardware viruses, also known as

Hardware Trojans (HTs). In the field of electronics, HT viruses are a critical problem that

has the potential to become an outbreak in the coming years, presenting a significant threat

both technologically and socially. The majority of the studies are concerned for the

development of countermeasures against HTs for Field-Programmable Gate Array (FPGA)

circuits at post-silicon stage. There is a limited information and published studies for the

ASICs and specifically for the pre-silicon stage [1–25]. ASICs are challenging due to the

variety of design phases especially on the pre-silicon stage and for the need of professional

tools for the design of each phase.

HTs are related to unwanted modifications to circuits that occur during the pre-silicon and

post-silicon stages. Because of the complexity of modern circuits, HTs can be inserted at

any phase of IC development and remain inactive until activated by a variety of activation

mechanisms. HTs are related to total circuit collapse, unexpected IC failures and the leakage

of sensitive information [16]. Therefore, developing well-designed and efficient HT

countermeasures is crucial. The HT structure consists of an activation mechanism (trigger)

and an effect (payload). HTs remain totally silent and via rare events or signals their triggers

are activated [16], based on two logics, sequential or combinational. Sequential HTs need a

sequence of rare signals for their activation, while the activation of combinational HTs is

based on the simultaneous presence of a combination of rare signals. Furthermore, HT

attacks are grouped into two categories of attacks, cryptographic engine and processor

attacks. Cryptographic engine attacks try to leak encrypted information through various

2

attack mechanisms, while the general-purpose processors aim to degrade or even to totally

destroy the system via the memory, at lower levels of the processor and kernel.

The question that quickly comes to mind is, who gains from the insertion of HTs into ICs?

A competitor, for example, might put an infected circuit into another company's IC to

discredit it, diminish its market share, consumer confidence, and earnings. Another HT use

case involves the sabotage of military equipment and infrastructure between countries

through HT cyber warfare [17].

Ideally, any unwanted alteration applied to an IC should be detected at any phase of the pre-

silicon (e.g., Design Rule Checking–DRC, and Layout vs. Schematic–LVS checking) and

post-silicon verification stages. However, the pre-or post-silicon stage of an IC requires the

IC golden model. This information is not always available, particularly for designs that are

based on IPs that originate from mediator manufacturers. HT attacks can be divided

according to the number of phases for each stage in the circuit’s production chain at the

Register Transfer Level (RTL), Gate Level Netlist (GLN), Placement & Routing (P&R) and

Graphic Database System II (GDSII) for the pre-silicon stage, as well as fabrication and

testing–assembly for the post-silicon stage. Depending on the targeted phase, the attacker

might obtain full access to design files and source code, or compromise computer-aided

design tools and scripts to output a modified IC representation without altering the source

code. Fabrication attacks, on the other hand, take place after tape-out and can remove or add

components via layout geometry modification, reverse engineering or IC metering.

Machine Learning (ML) [18] and Deep Learning (DL) [19] in particular represent a

collection of algorithms for modeling patterns embedded in data. DL has become very

popular, especially in the last decade, for the development of solutions in multiple scientific

fields, the industry, bioinformatics, agriculture, etc. [20][21]. In the hardware security field,

a plethora of ML-based approaches for HT detection has been introduced in the last six years

[22][23]. For the pre-silicon stage, these studies aim for the classification of normal and HT-

infected circuits at the GLN phase, using area and power analysis GLN features such as

number of gates, number of nets, number of multiplexers, number of flip-flops, number of

cells and number of ports, as well as total, switching and combinational power. The most

frequently used ML algorithms are Support Vector Machine (SVM) and Random Forest

(RF), with SVM typically ranking as the best-performing model [24][25][26][12].

Most ML-based studies in the field of HTs utilize the public Trust-HUB [28][29] library of

circuit designs for extracting features related to both HT-free and HT-infected ICs. Utilizing

3

the Trust-HUB repository has three major disadvantages: since the majority of circuits are

designed for FPGA, there is an imbalance between HT-free (N = 18) and HT-infected (N =

880) circuits, the circuits do not have diversity, and they are large in size, which means that

they are easier to detect. The lack of HT-free and diversity designs leads to the creation of

imbalanced data sets and subsequently to highly unreliable models with low generalization

capacity which are incapable of detecting small-in-size HTs. It is becoming evident that the

HT detection field requires a much higher number of circuit and diversity designs than what

is already available in Trust-Hub, for developing robust ML models. This is not an easy task,

since the majority of IC designs are protected by Intellectual Property (IP) rights and will

hardly ever be deposited in public repositories such as Trust-HUB. Thus, the community

will have to become creative and make the most out of the available circuit designs from

public resources.

1.1 Motivation and Structure of the Dissertation

The main topic of this research is to provide a solution to the Trust-HUB HT-free (TF) and

HT-infected (TI) circuits imbalance problem, for the first time, by developing a feature

generative approach based on Generative Adversarial Networks (GANs), named

GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS. GAINESIS utilizes a

Wasserstein Conditional Generative Adversarial Network (WCGAN) model for the

synthesis of new HT-free and HT-infected circuit features from the GLN phase. GANs are

mostly used in the computer vision field for generating artificial images on various domains,

such as realistic photographs of human faces [30], textual descriptions of birds and flowers

[31], reconstructing damaged photographs of human faces [32], removing rain and snow

from photographs [33] and many other functions. For the development of GAINESIS, the

Design Compiler NXT tool was utilized to synthesize 880 circuits (18 TF and 862 TI) at the

GLN phase based on designs deposited in Trust-HUB. In-house-developed scripts were used

to extract power and time features and to create the original data set. Also, multiple ML

algorithms were tested on the original data set and the best-performing one (Gradient

Boosting—GB) was used to further benchmark multiple GAN flavors and select the one that

was better suited to the HT detection field (WCGAN). Based on the final GAINESIS model,

new synthetic data sets of different sizes were generated and used to train distinct GB models

to assess the applicability of GANs in the HT detection field. The best performed GB-

classifier was picked as our main classifier with the name ATLAS: hArdware Trojan

Learning AnalysiS and compared to existing methods at the same unknown benchmark.

4

The remaining part of this dissertation is organized as follows: a detailed description of the

HTs is given in Chapter 2. Specifically, are mentioned in detail HTs structure, models,

attacks and taxonomy.

An overview of AI is presented in Chapter 3. First, we present the terms about AI, ML and

DL. Next, we present the tasks of learning and the differences and then we present the most

significant types of learning models.

Countermeasures against HTs are presented in Chapter 4. Specifically, we present a

historical throwback of countermeasures. Then we present the categorization of the studies

to journal and conference approaches. Also, we present the distribution of the most

contributing journal and conference studies and we show the studies trend through the years.

Lastly, we present in detail the categorization of countermeasures approaches against HTs

through three main categories and six sub-categories. Specifically, we mention the function

of each represented sub-category and category with tables and figures and we present in

aggregate the function, benchmark and features for the approaches for each category.

Chapter 5 presents the methodology of our GAINESIS approach. First, we present our

scheme of GAINESIS methodology. Next, we mention our data set and features

development. Then, we present our ML-based classifiers development for the classification

of HT-free and HT-infected circuits and their evaluation. Specifically, seven different ML

algorithms were used and compared for the development of our main classifier. Next, we

present the development and evaluation of our GAINESIS approach. Lastly, we present our

new generated and mixed data sets, as well as the development of our new generated and

mixed based classifiers.

Chapter 6 presents the results of our classifiers for new generated and mixed classifiers

compared with our initial classifier. Finally, we present the comparison of our ATLAS

classifier with existing state-of-the-arts methods.

Conclusions and future work are presented in Chapter 7.

5

 Background

2.1 Integrated Circuits Supply Chain

To have a thorough grasp of the topic of HTs, the difficulty of preventing their contagious

nature, and the challenges of identifying them while ensuring the smooth operation of ICs,

we must first have a strong understanding of the modern circuit production chain and

especially the production chain of the ASICs. ASICs production chain consists of two stages,

pre- and post-silicon stages. The pre-silicon stage is the circuit design period and consists of

steps: RTL, GLN and P&R. And the post-silicon stage is the fabrication period of the circuit

and consists of the Side Channel Analysis (SCA) phase.

Specifically, at RTL phase describes the specifications that the circuit will have through the

usage of a Hardware Design Language (HDL) like Verilog or VHDL. When IC design and

integration are completed at RTL, the design must be synthesized to a GLN. GLN is

characterized as the logic synthesis phase and RTL is translated to GLN. The logic synthesis

phase is done via professional Electronic Design Automation (EDA) tools like Cadence

Genus Synthesis Solution, Synopses Design Compiler NXT etc.). These tools provide area,

power and timing analysis of the circuit. The last phase is the P&R and is known as the

physical design phase where the layout level is created via the GLN and is produced the final

GDSII of the circuit.

So, HT attacks are divided into four general groups for the pre-silicon stage (Figure 2.1),

i.e., RTL, GLN, P&R and GDSII as well as Fabrication and Testing/Assembly for the post-

silicon stage. Depending on the targeted phase, the attacker might obtain full access to source

code and design files, or compromise computer aided design tools and scripts to output a

modified IC representation without altering the source code. On the other hand, fabrication

attacks take place after tape-out and can add or remove components via reverse engineering,

layout geometry modification or IC metering (Figure 2.1).

6

Figure 2.1 IC supply chain and HTs insertion in pre- and post-silicon stages

2.2 Hardware Trojan Structure

The typical structure of an HT consists of two mechanisms, triggers and payloads (Figure 2.

2). Triggers are related to rare signals or events [34] and payloads with the activation of

malicious functions. An HT aims to remain stealthy - to be undetectable during design

simulation or testing and to be activated under rear conditions. So, an HT “wakes up” when

the rare signal or event appears and via the payload mechanism attacks the IC.

Figure 2.2 Hardware Trojan structure

2.3 Hardware Trojan Models

As mentioned HTs are designed to be undetectable, their structure is consisted of a trigger

and a payload mechanism and can be implemented in all pre- and post-silicon phases of the

7

ICs production chain. Another characteristic of HTs is their logic models. Logic models are

associated with the trigger mechanism and especially how the rare signal or event will

activate the trigger mechanism. HTs are designed to have two logic models, a combinational

or a sequential [34]. In combinational logic models the trigger mechanism is activated from

a set of simultaneous rare signals or events (Figure 2.3A) and in sequential logic models

from a series of rare events or signals (Figure 2.3B).

Figure 2.3 Concept graph presenting (A) combinational and (B) sequential model logics

2.4 Hardware Trojan Attacks

The aim of HTs is to affect the normal functioning of the infected circuit. Thus, the HTs

attacks can be divided into two types of attacks: those aimed at destroying the device known

as general purpose processors attacks and those aimed at leaking sensitive information,

known as cryptographic engine attacks. Cryptographic engine attacks aim at the crypto

engine of the infected circuit through various attack mechanisms and leak encrypted

information. General purpose processors attacks aim at the lower levels of the processor,

kernel, memory and secret keys and degrade the system, even down to its total destruction.

For example, these types of HTs can be activated under rare signals or events and disable

the secure boot mechanism of the infected circuit [35][36].

2.5 Hardware Trojan Taxonomy

There is no formal taxonomy for HTs. Εach study has its taxonomy structure. Tehranipoor

et al. [37] presented a taxonomy of HTs based on three main characteristics of HTs, physical,

activation and action. As physical characteristics are considered the type, size or structure of

an HT. Activation characteristics are divided into external and internal activation

mechanisms of an HT and action characteristics are considered the types of HT attacks to

the infected circuit. Karri et al. [38] proposed a taxonomy model for HTs, based on five

8

characteristics: insertion phase, abstraction level, activation mechanism, effect and

localization. While Bhunia et al. [34], proposed a taxonomy model based on trigger and

payload mechanisms.

2.6 Challenges Against Hardware Trojan

Dealing with HTs has become one of the most important problems in the science of hardware

security. Every year new studies are developed to address them. The main reason for the

difficulty in dealing with HTs is main a large number of different cases of HT infections.

HTs can be inserted at any stage and phase of ICs development, can attack at any unit of the

ICs, processors, memory units, etc., Also, HTs can affect the ICs via a variety of attacks and

can have different physical layouts. In addition, the stealthy nature of HTs and their ability

to activate under rare conditions combined with the fact that the more complex a circuit is,

the more difficult it is to deal with.

9

 An Overview on Artificial Intelligence

3.1 Introduction

Every year more and more people refer to terms like AI, ML and DL. This happens because

a technology trend is the development and use of ΑΙ-based technologies on a professional or

personal level. As a result, the meaning of these terms has been lost. So, it is important to

understand that all these terms are part of the AI scientific field.

In this chapter a detailed reference is made to the science of AI. Specifically, this chapter of

the thesis is has presented differences between the AI, ML and DL terms. Also, are presented

with details the learning tasks of AI like, supervised and unsupervised learning. Furthermore,

a plethora of learning models and algorithms are discussed exhaustively. The aim of this

chapter is for the readers to be able to distinguish the differences between the AI, ML and

DL, as well as to comprehend how each learning model works and when their algorithms

are applied.

3.2 Artificial Intelligence Term

The term the modern AI first was introduced in 1956 by John McCarthy through an academic

conference. McCarthy defined AI as the science of making intelligent machines. So, AI can

be defined as the scientific field that aims to teach machines to think without the need for

human intervention. AI consists of a broad area of computer science and can be categorized

into three main categories, AI-narrow, AI-general and AI-super. AI-narrow is goal-oriented

and has been programmed to complete a single task. AI-general allows machines to learn

and apply their intelligence to solve any problem by mimicking human intellect and/or

behaviors and in AI-super machines are capable of outperforming even the best humans in

terms of intelligence.

3.3 Machine Learning Term

ML term was introduced in 1959 by Samuel et al. [18] and it was defined as the scientific

field that allows machines to learn without being strictly programmed. Specifically, ML

consists of a subset of AI that uses statistical learning algorithms for the development of

smart systems. Without being explicitly programmed, ML-based systems can learn and

10

improve on their own. The ML algorithms can be categorized into three main categories,

supervised, unsupervised and semi-supervised learning.

3.4 Deep Learning Term

DL is a subset of ML techniques utilizing multiple layers of training with more reliable

performance and fastest speed. The DL technique was inspired by the way a human brain

analyzes information. DL-based systems consist of interrelated layers for the classification

or prediction of information. In Figure 3.1 is presented in brief the differences between AI,

ML and DL.

Figure 3.1 Artificial intelligence vs machine learning vs deep learning

3.5 Tasks of Learning

AI, ML or DL algorithms can be categorized into three categories of learning tasks,

supervised, unsupervised and semi-supervised learning. The main difference is that

supervised learning uses labeled data to help in prediction, while unsupervised does not.

Semi-supervised learning uses data mixed with labeled and unlabeled examples. However,

there are some distinctions between the three techniques, as well as key areas where one

surpasses the others. In this section are presented the differences between the three learning

tasks.

3.5.1 Supervised Learning
Supervised learning uses data sets with labeled samples as inputs and outputs for the

development of an ML or DL-based model. Supervised learning can be used as a solution

11

for two categories of problems, classification or regression. In the classification problems a

labeled data set is split into sets, the training and test set for the development of a model.

The aim is the model to be able to classify with high performance the samples of the test set.

For example, a classic supervised classification learning problem is the classification of

original from spam emails. Furthermore, in the regression problems aim of the model is

through a labeled data set to understand the relationship between dependent and independent

variables of the data set. Regression models are useful for predicting numerical values based

on various data samples, such as sales revenue estimates for a certain business. In Figure 3.2

is presented a typical figure of supervised learning.

Figure 3.2 Supervised learning

3.5.2 Unsupervised Learning
Unsupervised learning uses data sets with unlabeled samples as inputs and outputs for the

development of an ML or DL-based model. In unsupervised learning-based models from the

data set it derives patterns between the features and when the model analyzes new data, it

can classify the new samples into a class, based on the already learned feature patterns.

Unsupervised learning can be used as a solution for clustering or dimensionality reduction

problems. In the clustering problems aim of the model is via an unlabeled data set to group

the data set. In dimensionality reduction problems aim of the model is to convert the higher

dimensions data set into lesser dimensions without losing information, to reduce the poor

performance which is produced from the data sets with a large number of features. In Figure

3.3 is presented a typical figure of unsupervised learning.

12

Figure 3.3 Unsupervised learning

3.5.3 Semi-supervised Learning
Semi-supervised learning uses data sets with mixed samples like, labeled and unlabeled

samples as inputs and outputs for the development of an ML or DL-based model. There is a

desirable prediction problem, but the model must learn the structures to arrange the data and

produce predictions. Classification and regression are two common semi-supervised

problems. Unsupervised and semi-supervised learning may be more tempting options

because relying on domain expertise to label data accurately for supervised learning can be

time-consuming and costly. In Figure 3.4 is presented a typical figure of semi-unsupervised

learning.

Figure 3.4 Semi-supervised learning

3.6 Types of Learning Models

3.6.1 Artificial Neural Networks Models
Artificial neural networks (ANNs) are inspired by the functionality of the human brain.

ANNs emulate complicated tasks like cognition, learning, decision making and pattern

generation [39]. The human brain is made up of billions of neurons that communicate with

one another and process any information that is sent to them. Based on the same philosophy,

an ANN is a simplified model of the structure of a biological neural network, which is made

up of interconnected processing units that are organized in a specific topology. Specifically,

ANNs consist of three categories of layers, input, hidden and output layers. Input layers fed

the data set into the system. Hidden layers produce the learning of the model and the

13

decision/prediction is given from the output layer. ANNs are supervised models that are

commonly used to solve regression and classification problems. The most common ANNs-

based algorithms are perceptron [40], multi-layer perceptron [41], back-propagation [42],

resilient back-propagation [43] and counter propagation algorithms [44]. Also, other

common ANNs algorithms are radial basis function networks [45], Kohonen networks [46],

Hopfield networks [47], generalized regression networks [48], autoencoder [49], adaptive-

neuro fuzzy inference systems [50], extreme learning machines [51] and self-adaptive

evolutionary extreme learning machines [52]. In Figure 3.5 is presented a typical structure

of an ANN model.

Figure 3.5 Artificial neural networks model

3.6.2 Bayesian Models
Bayesian models (BM) are a type of probabilistic graphical model in which the analysis is

carried out using Bayesian inference. This model belongs to the domain of supervised

learning and can be used to solve classification or regression problems. Some of the most

common BM-based algorithms are Bayesian network [53], bayesian belief network [54],

naive Bayes [55], multinomial naive Bayes [56] and Gaussian naive Bayes [57]. In Figure

3.6 is presented a typical figure of a Bayesian model.

Figure 3.6 Bayesian model

14

3.6.3 Clustering Models
As mentioned, clustering-based models [58] are typical applications of unsupervised

learning models. These types of models are used to find natural groupings of data, known as

clusters. Common clustering algorithms are the k-means [59], hierarchical clustering [60]

and the expectation maximisation algorithm [61]. In Figure 3.7 is presented a typical

structure of a cluster-based model.

Figure 3.7 Clustering model

3.6.4 Computer Vision Models
Computer vision (CV) models aim to understand information from digital images or videos.

CV-based models are concerned with the automatic extraction, analysis and understanding

of useful information from a single image or a sequence of images. It involves the

development of a theoretical and algorithmic basis to achieve automatic visual

understanding. Some of the most common algorithms are, HRNet-OCR [62],

FixEfficientNet [63] and EfficientDet [64]. In Figure 3.8 is presented a typical structure of

a CV model.

Figure 3.8 Computer vision model

3.6.5 Decision Trees Models
Decision trees (DT) consist of classification or regression models based on a tree-like

architecture [65]. In DT-based models, the data set is progressively grouped into smaller

homogeneous subsets known as sub-populations, while an associated tree graph is produced

15

simultaneously. Each internal node of the tree structure reflects a separate pairwise

comparison on a given feature, and each branch indicates the outcome of this comparison.

Following the path from the root to the leaf, leaf nodes represent the final prediction or

decision of the process. Common DT-based algorithms are classification and regression trees

[66], chi-square automatic interaction detector [67], and the iterative dichotomiser [68]. In

Figure 3.9 is presented a typical structure of a DT model.

Figure 3.9 Decision trees model

3.6.6 Deep Neural Networks Models
Deep neural networks (DNNs) [69] consist of a modern version of ANNs. DL-based models

consist of the new era of AI while more and more models are developed based on them. As

the ANNs, the DL-based models consist of three categories of layers, input, multiple hidden

and output layers. The significant difference between ANNs is the usage of multiple

processing layers which can learn complex data representations via multiple levels of

abstraction. Furthermore, one more advantage of DL-based models is that the feature

extraction can be performed by the model itself. These models can be used for supervised,

unsupervised and semi-supervised learnings. The most common DL-based algorithms are

convolutional neural networks [70], deep Boltzmann machines [71], deep belief networks

[72], autoencoders [73], recurrent neural networks [74] and long short-term memory

networks [75]. In Figure 3.10 is presented a typical structure of a DNN model.

Figure 3.10 Deep neural networks model

16

3.6.7 Dimensionality Reduction Models
Dimensionality reduction (DR) based models aim of the models is to convert the original

higher dimensional data set into lower dimensional representation to preserve as much

information from the original data as feasible and to reduce the poor performance which is

produced from the data sets with a large number of features. DR-based models can be used

for supervised and unsupervised learning types and usually are applied to solve regression

problems. The most common DR-based algorithms are principal components [76], partial

least squares [77] and linear discriminants [78]. In Figure 3.11 is presented a typical structure

of a DR model.

Figure 3.11 Dimensionality reduction model

3.6.8 Ensemble Learning Models
Ensemble learning (EL) models are designed to improve the prediction performance of a

given statistical learning or model fitting technique by developing a linear combination of

simpler base learners. So, each trained simpler base learner consists of a single hypothesis.

EL-based models or multiple-classifier systems enable hybridization of hypotheses that were

not produced by the same base learner, producing improved outcomes in the case of high

variety among the single models. Typically, in EL-based models as the base learner is used

the DT architecture. Common EL-based algorithms are AdaBoost [79], bootstrap

aggregating [80], boosting technique [81], gradient boosting machines [82] and random

forest [83]. In Figure 3.12 is presented a typical structure of an EL model.

17

Figure 3.12 Ensemble learning model

3.6.9 Generative Learning Models
Generative learning (GL) models aim to generate new synthetic samples. A typical GL

model consists of two neural networks, the generative network and the discriminative

network. The generative network learns how to produce new synthetic samples according to

the initial data set and the discriminative network distinguishes the generated from the initial

original samples. GL-based models mostly are used to generate new samples in art, video

games and advertising. Common GL-based algorithms are GANs [84], conditional

generative adversarial networks (CGAN) [85], Wasserstein generative adversarial network

WGAN [86], WCGAN [87], StyleGAN [88] and CycleGAN [89]. In Figure 3.13 is presented

a typical structure of a GL model.

Figure 3.13 Generative learning model

3.6.10 Instance Based Models
Instance based (IB) models are memory-based models that learn from the comparison of

new cases to instances in the training data set. These types of models construct hypotheses

directly from the available data. Also, IB-based models generate regression or classification

predictions only via specific instances while these models do not adhere to a set of

abstractions. The main disadvantage of IB-based models is that their complexity increases

with data. The most common IB-based algorithms are the k-nearest neighbor [90], vector

quantization [91], locally weighted [92], support vector machines [93] and self – organizing

map [94]. In Figure 3.14 is presented a typical structure of an IB model.

18

Figure 3.14 Instance based model

3.6.11 Natural Language Processing Models
Natural Language Processing (NLP) models are used to provide automatic summarization

of the main points in a given text or document. NLP-based algorithms are also used to

classify text according to predefined categories or classes and are used to organize

information, and in email routing and spam filtering. The most common NLP-based

algorithms are BERT [95] and XLNet [96]. In Figure 3.15 is presented a typical function of

an NLP model.

Figure 3.15 Natural language processing model

3.6.12 Regression Models
The goal of a regression learning model is to predict an output variable based on known

input variables. The most common regression-based algorithms are linear regression [97],

logistic regression [98], ordinary least squares regression [99], cubist [100] and locally

estimated scatterplot smoothing [101]. In Figure 3.16 is presented a typical structure of a

regression model.

19

Figure 3.16 Regression model

3.6.13 Regularization Models
Regularization models consist of an extension of regression models. The aim of

regularization-based models is through a penalize technique to simplify complex models to

simpler performance models. Common regularization algorithms are ridge regression [102],

least absolute shrinkage and selection operator [103] and least-angle regression [104]. In

Figure 3.17 is presented a typical structure of a regularization model.

Figure 3.17 Regularization model

3.6.14 Speech Recognition Models
Speech recognition (SR) models or voice recognition models are used in speech recognition

technology to convert voice to text. SR-based models work by breaking down the audio of

a speech recording into individual sounds, analyzing each sound, using algorithms to find

the most probable word fit in that language, and transcribing those sounds into text. Most

common SR-based algorithms are ContextNet [105], LiGRU [106] and ResNet [107]. In

Figure 3.18 is presented a typical function of an SR model.

20

Figure 3.18 Speech recognition model

3.7 AI History Timeline

As can be observed from the Figure 3.19, the first algorithms were created in 1950 with the

aim of developing simple ΑΙ models to solve basic mathematical problems. Moreover, from

1950-1970 an increase in the development of new algorithms can be observed. While from

1980-2000 there is a sharp decline. The main reason was the need to solve increasingly

complex mathematical problems, combined with the lack of computational resources. This

led to a lack of interest in this field of research. While, it is observed that since 2014, the

period in which computing resources have increased, more sophisticated algorithms are

being developed to solve more complex problems, such as computer vision, natural language

processing and speech recognition problems.

Figure 3.19 ML & DL algorithms history timeline

21

 Countermeasures Against Hardware Trojans

4.1 Introduction

As mentioned, HTs can be inserted at any stage and phase of ICs development, can attack at

any unit of the ICs, can affect the ICs via a variety of attacks and can have different physical

layouts. For these reasons in this thesis, we categorized the countermeasures approaches

against HTs in three major categories, SCA-based approaches, ML-based & simulation

approaches and auxiliary approaches (Figure 4.1). SCA-based approaches are categorized

into two subcategories power and time analysis approaches. ML-based and simulation

analysis approaches are also categorized into two subcategories Logic Testing (LT) and ML-

based classification. And the auxiliary approaches are categorized in Runtime Monitoring

(RM) and Prevention-Facilitation (PF) approaches.

Figure 4.1 Categorization of countermeasures approaches against HTs

4.2 Historical Throwback

Historically, the first research attempt that mentioned and studied the existence of HTs in

ICs was presented by Agrawal et al [108] in 2007. The authors have developed the first

detection approach based on SCA-based power analysis. In 2009, Chakraborty et al [109]

developed the first method for HT detection based on LT. In 2012, Salmani et [110] proposed

22

the first PF approach. In 2014 introduced by Bao et al [111] the first ML-based approach for

the post-silicon stage. In 2015, Ngo et al [112] proposed an RM approach. Lastly, in 2016,

the detection of HTs at GLN was proposed by Hasegawa et al [24], while in 2022 we

proposed GAINESIS [113] the first GAN-based approach for the synthesis of new generated

samples for GLN. In Figure 4.2 is presented a history timeline for countermeasures against

HTs.

Figure 4.2 History timeline for countermeasures against HTs

4.3 Categorization of Studies

We present twenty-nine approaches in total. Twelve are conference and sixteen are journal

articles referring to a period between 2007 and 2019 (Figure 4.3).

As mentioned, the category of SCA-based approaches consists of two subcategories SCA-

based power analysis and SCA-based time analysis. Specifically, SCA-based power analysis

consists of five approaches, four journals and one conference. While SCA-based time

analysis has only two journal approaches. Next, the category ML-based and Simulation

consists of thirteen approaches. LT simulation subcategory consists of three in total

approaches, two journals and one conference. ML-based subcategory consists of ten in total

approaches two journals and eight conference studies. While the last category consists of

two subcategories RM and PF. RM-based subcategory consists of two journals and one

23

conference study. While the PF subcategory consists of four journals and two conference

methods. (Figure 4.4).

Figure 4.3 Categorization of studies

Figure 4.4 Categorization of studies per sub-categories

4.4 Distribution of the most Contributing Journal Studies

For these studies, it was noted that 50% were developed by academic institutions in the USA.

Japan is in second place, with 13% of the total studies, which are based on ML at the GLN

phase. China and Iran have 10% of the studies each. China is involved in the development

of ML-based studies for the post-silicon stage of ICs. While Iran is dealing with the

4

2 2 2 2

4

1 0 1

8

1
2

0

1

2

3

4

5

6

7

8

9

Power Analysis Time Analysis Logic Testing
Simulation

Machine
Learning Based

Runtime
Monitoring

Prevention &
Facilitation

Journal Conference

24

development of studies for the PF subcategory. Furthermore, France, Austria, Malaysia and

India have 3% each. (Figure 4.5).

Our next step was to present the contribution of the most important journals according to the

examined studies. In total twenty-two journals and conferences were used for the

publishment of the examined studies. 64% of the studies were published at conferences and

36% at journals. From the eight in total journals the most significant journals were the

“Transactions on Information Forensics and Security”, “Transactions on Very Large-Scale

Integration Systems” and “Transactions on Computers” with three published studies each.

Then follows the “Microprocessors and Microsystems” journal with two published studies.

Specifically, “Transactions on Information Forensics and Security” journal published studies

that mainly focused on SCA-based power analysis approaches. While the “Microprocessors

and Microsystems” journal published studies that focused exclusively on PF approaches

(Figure 4.6).

Figure 4.5 Geographical distribution of the contribution of each country to the research

field focusing on countermeasures against HTs viruses.

25

Figure 4.6 Distribution of the international journals and conferences and concerning

applications of studies per sub-categories.

4.5 Studies Trend

In Figure 4.7 we can observe the popularity of each sub category over the years. Specifically,

from 2007 to 2013 most of the studies focused on the development of methods for the

detection of HTs based on SCA power and time analysis. In 2012 the first auxiliary-based

study appears. And the golden era of auxiliary based approaches was 2015 when the majority

of these studies are developed. The first ML-based approach was introduced in 2014. But in

2016 and 2017 there is a sharp increase in the development of such methods. As regards the

LT simulation approaches the first study was presented in 2009 and other such approaches

have been developed over time.

1
2

1
1

1

1
1
1
1

1

1
1
1
1
1
1
1
1
1

1

1
1

1

1
1
1

2

0 0.5 1 1.5 2 2.5 3

IEEE - Symposium on Security and Privacy (SP)
IEEE - Transactions on Information Forensics and…

IEEE - Transactions on Very Large Scale Integration…
IEEE - Transactions on Computers

IEEE - Design & Test
Springer - Cryptographic Hardware and Embedded…

ACM - Conference on Computer and…
IEEE - Transactions on Computer-Aided Design of…

IEEE - International Symposium on On-Line Testing…
IEEE - International Symposium on Circuits and…

IEEE - International Conference on ASIC (ASICON)
IEEE - International Symposium on Quality…

IEEE - International Conference on Application-…
IEEE - Asian Hardware-Oriented Security and Trust…

IEEE - International Conference on Computer…
IEEE - Global Conference on Consumer Electronics…
IEEE - European Conference on Circuit Theory and…

Science direct - Integration
IEEE - Computer Society Annual Symposium on VLSI…

IEEE - Design Automation Conference (DAC)
IEEE - Embedded Systems Letters

Science direct - Microprocessors and Microsystems

SCA-based power analysis SCA-based time analysis Logic testing simulation

ML-based Runtime monitoring Prevention and facilitation

26

Figure 4.7 Countermeasures trend

4.6 SCA-based Approaches

SCA-based approaches aim to secure ICs for the SCA phase of the post-silicon stage of ICs.

These approaches use techniques based on side-channel analysis features and detect changes

of physical characteristics like power and time, caused by HTs. If the original SCA values

of an IC differ, then the circuit is infected. That is caused because when an HTs is partially

or fully activated the original infected circuit exhibit greater switching activity compared to

the original normal circuit.

4.6.1 SCA-based Power Analysis Approaches
The first study which mentioned the existence of HTs was presented in 2007 by Agrawal et

al. [108], and it was an SCA-based approach. Specifically, the authors developed a method

for the detection of large or small in physical layout HTs based on SCA of transient current

characteristics. In a study [114], the authors introduced a method for the detection of HTs

based on SCA of static current characteristics. For multiple places across the 2-D surface of

the chip, they took simultaneous measurements of static current features. The experimental

results showed that this multiple measurement techniques in combination can effectively

detect small HTs. Furthermore, authors in the study [115], proposed an SCA-based method

via a power supply transient signals analysis. To evaluate local power supply transient signal

measurements received from many individual power ports on the chip, a power supply

11

2

1

11 3

4

1 1

1

1

1

2

11

2

1

1

201920182017201620152014201320122011201020092007

Power Analysis Time Analysis Machine Learning

Logic Testing Runtime Monitoring Prevention and Facilitation

27

transient analysis technique was applied. The power supply transient signals for each power

port were measured, and the power supply transient of each surrounding power port was

compared. Following that, a signal calibration was used to reduce noise, and a scatter plot

analysis was designed to detect an HT effectively. The final results showed that this

technique was able to detect large physical layout HTs. In 2011 developed by Koushanfar et

al. [116] a unified framework based on SCA leakage power. The authors also combined

calibration and sensitivity analysis techniques for the detection of HTs. This approach was

able to detect with low process overhead large in physical layout HTs. The last SCA-based

on power features approach presented in this book is the study [117]. Specifically, the

authors proposed a multiple-parameter SCA-based approach for the detection of HTs. They

used and combined dynamic current and maximum frequency analysis features for HTs

detection. The results showed that their approach was able to detect varying types and sizes

of HTs. In Table 4.1 is presented a summary of SCA-based power analysis approaches.

Table 4.1 Summary of approaches in SCA-based power analysis

Authors
Observed
Features

Feature
Number Functionality Effectiveness Benchmark Type

[108] Transient supply
current (IDDT) 1

Detection of HTs in ICs, based
on side-channel information
analysis via transient current

Large and
small HTs

RSA
Circuit Simulation

[100] Quiescent supply
current (IDDQ) 1 Detection of HTs based on the

analysis of a chip’s IDDQS Small HTs N/A Experimental

[101] Transient supply
current (IDDT) 1 Detection of HTs via sensitivity

analysis of power signal Large HTs
ISCAS 85
Benchmar
k Circuit:

C499

Simulation

[102]

Delay (T),
Quiescent supply
current (IDDQ),
Transient supply
current (IDDT)

3

Detection of HTs in ICs based
on gate-level characterization

and multi-parameter
measurements

Large HTs

ISCAS 85
Benchmar
k Circuits:
C8, C499,

C432,
C1355,
C3450

Simulation

[103]

Transient supply
current (IDDT),

Maximum
operating

frequency (Fmax)

2
Detection of HTs, based on

dynamic current and maximum
operating frequency

Varying types
and sizes of

HTs

Xilinx
FPGA:

Virtex-II
XC2V500

Simulation/
Experimental

28

4.6.2 SCA-based Time Analysis Approaches
In 2011 developed by Lamech et al [118] an SCA-based on time analysis features approach.

Specifically, the authors combined SCA delay and power features for the detection of HTs.

The experimental results showed that their method was able to detect large and small in size

HTs. In 2013 Xiao et al. [119] developed an approach based on clock sweeping and SCA

delay characteristics. They used a combination of path delay fault patterns with clock

sweeping transition technique for the detection of HTs in a circuit. The results showed that

their method could detect small in size HTs. In Table 4.2 is presented a summary of SCA-

based time analysis approaches.

Table 4.2 Summary of approaches in SCA-based time analysis

Authors
Observed
Features

Feature
Number

Functionality Effectiveness Benchmark Type

[103]
Power,

Delay (T)
2

Detection of HTs,
based on the

analysis of power
and delay

Large and small HTs
Xilinx FPGA Circuit:
Virtex XUP-V2Pro

Experimental

[119]
Transition,
Delay (T)

2

Detection of HTs
based on clock

sweeping and delay-
based detection

Small HTs
ISCAS 89:

S38417
Simulation/

Experimental

4.6.3 SCA-based Approaches Conclusions
Power analysis approaches constitute 71% of the total approaches in the SCA-based

category. While the time analysis approaches 29% (Figure 4.8). As regards the benchmark,

ISCAS 85 and custom circuits were the most used for power analysis approaches while

ISCAS 89 and custom circuits for time analysis approaches (Figure 4.9). Finally, as far as

features were concerned, the most used features for power analysis approaches were the

quiescent and transient supply current and the delay for time analysis approaches (Figure

4.10).

29

Figure 4.8 Number of studies in SCA-based approaches category

Figure 4.9 Benchmark in SCA-based approaches category

1

2

2 1

1

0 0.5 1 1.5 2 2.5 3 3.5

NA

ISCAS 85

Custom circuit

ISCAS 89

Power Analysis Time Analysis

30

Figure 4.10 Features types in SCA-based approaches category

4.7 ML and Simulation based Approaches

ML approaches aim to handle HTs based on classification. These types of approaches

developed ML-based classifiers for the classification of HTs in different phases of ICs

development. On the other simulation-based approaches like logic testing techniques aim to

generate tests that activate HTs and propagate the HTs payload to primary outputs for

comparison with the golden circuit. The challenge with these techniques is to generate

efficient tests to activate HTs. In this section, are presented ML and simulation-based

approaches as countermeasures against HTs.

4.7.1 Logic Testing Simulation Approaches
As mentioned, LT simulation approaches aim to generate effective tests in order to be able

to activate and discover the stealthy nature of HTs. Due to the stealthy nature of HTs it is

difficult to distinguished an infected circuit. Random generated tests are not efficient for this

reason the LT-based simulation approaches aim to generate guided tests for the activation

and detection of HTs. In 2009 Chakraborty et al. [109] proposed an approach based on LT

simulation as a countermeasure against HTs. Specifically, they developed an LT approach

named MERO. This approach generated test patterns based on multiple excitations of rare

logic conditions at internal nodes. The simulation results showed that this approach was able

to detect small in size HTs. In 2011 Waksman et al. [120] developed an LT-based framework

named FANCI. They used Boolean functional analysis features to generate test patterns for

HTs activation. The results showed that this approach was able to detect infected circuits

with a low false positive rate. In the last study [121], the authors developed an LT-based

3

2

2

0 0.5 1 1.5 2 2.5 3 3.5

Transient supply current

Quiescent supply current

Delay

Power Analysis Time Analysis

31

simulation technique named VeriTrust for the detection of HTs at the design phase based on

HTs trigger inputs. VeriTrust technique consisted of a traced and a checker. The tracer parsed

verification tests to identify trigger signals containing inactive entries while the checker

examined these signals to determine which are associated with HTs. The results showed that

this approach was able to detect different types and sizes of HTs. In Table 4.3 is presented a

summary of LT simulation approaches.

Table 4.3 Summary of LT simulation approaches.

Authors
Observed
Features

Feature
Number Functionality Effectiveness Benchmark Type

[109] Nodes 1

Detection of HTs
based on test pattern

generation and
multiple excitations of
rare logic conditions at

internal nodes

Small HTs

ISCAS 85:
C2670, C3540, C5315,

C6288, C7552

ISCAS 89:
S13207, S15850, S35932

Simulation

[120] Wires 1
Detection of HTs
based on Boolean
functional analysis

HTs and IPs ISCAS 89:
S15850, S35932, S38417 Simulation

[121] Netlists 1

Identification of HTs
at the design stage,

based on the detection
of trigger inputs

Different
types and

sizes of HTs

ISCAS 89:
S15850, S35932, S38417,

S38584

Microcontrollers:
MC8051, LEON3

Simulation

4.7.2 ML-based Approaches
ML-based approaches aim to detect the existence of HTs in a circuit. In these approaches

are developed models which can classify infected from normal circuits or to use as reverse

engineering or side-channel analysis methods for the detection of HTs in a circuit.

Specifically, for the pre-silicon stage proposed ML-based classifiers for the classification of

infected and normal circuits at different pre-silicon phases. While ML-based methods that

work as reverse engineering techniques and ML-based methods trained via side channel

analysis features were developed for the detection of HTs at the post-silicon stage.

For the pre-silicon phase in 2016, Hasewaga et al. [24] proposed an SVM-based model for

the classification of infected from normal circuits. Specifically, the authors developed an

SVM-based model for the classification of HTs at the GLN phase of the pre-silicon stage.

For the training of the model was used a data set consisting of GLN-based features like nets

32

and gates of the circuits. The results showed that this approach was able to classify

effectively the infected with HTs from normal nets. The same group [25] 2017 proposed

another ML-based model. They developed an RF-based model which was trained via GLN-

based area features, like number of flip-flops and multiplexors before and after for each net.

The results showed that the RF-based model was effective for the classification of the two

classes. In 2018 Inoue et al. [26] proposed an SVM-based model in a combination with GLN-

based area features for the classification of HTs at the GLN phase of the pre-silicon stage of

ICs development. The SVM-based model was trained via area features like the number of

logic gates and flip-flops for each net of the infected and normal circuits. The final results

proved the validity of the method. In the study [27], the authors developed six ML-based

models for the classification of HTs at the GLN phase. Specifically, they developed and

compared six ML-based models which were trained via a dataset consisting of GLN-based

area, power, and time analysis features from infected and normal circuits. The features

consisted of area features like the number of cells, nets, ports, and power features like the

number of total switching and combinational power of each normal and infected circuits.

The experimental results showed that their GB-based model was able to classify effectively

the normal from HTs circuits.

As mentioned, also ML-based approaches were developed for the detection of HTs at the

post-silicon stage. So, for the post-silicon phase in 2014 Bao et al. [111] developed an ML-

based model as a reverse engineering approach for the detection of HTs. Specifically, they

trained an SVM classifier based on high resolution images features from golden and infected

with HTs circuits layouts. The simulation results showed that the SVM-based classifier was

able to classify the two classes efficiently. The same group in the study [122] proposed a

KMeans-based clustering model. The KMeans-based model has developed again via high

resolution image features from golden circuits and of three types of modifications based on

the golden circuits which consisted of the infected circuits. Another post-silicon detection

approach was developed in 2016 by Jap et al. [123]. Specifically, the authors developed an

SVM-based model for the detection of HTs. The model was trained from a data set consisting

of SCA-based time features like leakage from normal and infected circuits. Another study

with ML and SCA techniques was proposed by Xue et al. [124]. In this study, the authors

developed an SVM-based model for the detection of HTs at the post-silicon stage. The model

was trained via a data set that consisted of SCA-based power features and specifically

transient power supply features of normal and infected circuits. The experimental results

33

showed that this method was able to detect with effectiveness the infective from normal

circuits. Wang et al. [125] proposed another SCA-based method in combination with ML

techniques for the detection of HTs at the post-silicon phase. Specifically, they developed

an ELM-based model which was trained from a data set consisting of dynamic power

features from infected and normal circuits. In the study [126], the authors developed an

SVM-based model for the detection of HTs via SCA power features. Specifically, they

developed an SVM-based model which was trained via a data set consisting of SCA-based

power consumption waveforms features from infected and normal circuits and given. The

experimental results proved the validity of the method. Liu et al. [127] proposed another

SCA-based in combination with an ML-based model approach for the detection of HTs at

the post-silicon phase. They developed an SVM-based model which was trained via SCA

wireless transmission power waveform features from HTs free and infected circuits. The

results showed that their method was able to detect effectively wireless transmissions power

signals produced from HTs. In Table 4.4 is presented a summary of ML-based approaches.

Table 4.4 Summary of ML-based approaches

Authors Observed
feature

Feature
number

Positive
data

Negative
data Benchmark Models/

Algorithms Results

[24]

Features extracted
from known gate-
level netlists, like
LGFi, FFi, FFo,

PI and PO

5
118.969
Trojan
Nets

121.452
Normal

Nets

Trust-HUB:
RS232-T1000, RS232-T1600,
S15850-T100, S35932-T100,
S35932-T300, S38417-T100,
S38417-T300, S38584-T100,

S38584-T300

SVM 80% -
100% TPR

[25]
Features extracted

from gate-level
netlists,

11
429

Normal
Nets

54.782
Normal

Nets

Trust-HUB:
RS232-T1000, RS232-T1200,
RS232-T1300, RS232-T1400,
RS232-T1500, S15850-T100,
S35932-T100, S35932-T300,
S38417-T100, S38417-T200,
S38417-T300, S38584-T100

EL/RF 74.6% F-
measure

[26]

Features extracted
from netlists, like
LGFi, FFi, FFo,

PI and PO

5
248

Trojan
nets

1.991
Normal

nets

Trust-HUB:
RS232-T1000, RS232-T1100,
RS232-T1200, RS232-T1300,
RS232-T1400, RS232-T1500,

RS232-T1600

SVM

Type A:
58.9%

accuracy

Type B:
69.5%

accuracy

Type C:
65.1%

accuracy

34

[27]

Features from
area, power and

time analysis
through DC

compiler tool

11 892 18 Trust-HUB: All- Benchmarks GB 100% F1-
score

[111]
High resolution
images from ICs
golden layouts

160x160
pixels

500
Trojan

Addition

500
Trojan

Deletion

500
Trojan

Parametric

500
Trojan
Free

Custom

ISCAS 89:
S27, S298, S280, S15850,

S38417

ITC 99:
B18

SVM 90%
accuracy

[122]

Trojan Free ICs
golden layout
images and 3

types of
modifications

produced based
on these images,
Trojan Addition,

deletion and
parametric

160x160
pixels

500
Trojan

Addition

500
Trojan

Deletion

500
Trojan

Parametric

500
Trojan
Free

Custom

ISCAS 89:
S27, S298, S280, S15850,

S38417

ITC 99:
B18

Clustering/
K-Means

Trojan-
Free:

99.23%
accuracy

Trojan-

Addition:
100%

accuracy

Trojan-
Deletion:

100%
accuracy

Trojan-

Parametric:
98.86%
accuracy

[123]

Features extracted
from side-channel

analysis to
leakage of the
chip based on
time samples

4 N/A
75.000
Time

samples

Xilinx FPGA Circuit:
Spartan-6 SVM N/A

[124]

Features extracted
from the transient

power supply
currents (IDDT)

of each simulated
IC and a Trojan-
free or Trojan-

inserted indicator

501 50 Trojan
Infected

50
Trojan
Free

ISCAS 89:
S38417, S35932 SVM

Trojan-
inserted

ICs known:
100%

accuracy

Trojan-
inserted

ICs
unknown:

98%
accuracy

35

[125]

Features from
converted power

consumption
waveform into the
frequency domain

N/A N/A N/A N/A SVM 72.72%
accuracy

[126]

Features from
side-channel

analysis, dynamic
power

consumption

N/A N/A N/A N/A ANN/ELM 90%
success rate

[127]

Features consist
of transmission

power
measurements for

six ciphertext
blocks

transmitted by
each of 40
Trojan-free

circuits

6

40 Trojan-
I infected

40 Trojan-
II infected

30
Trojan
Free

Trojan-Free:
TSMC Microcontroller:

0.35-μm technology

Trojan-I and Trojan-II:
Created two HTs, which leak
the secret key of a wireless
cryptographic IC consisting
of an Advanced Encryption
Standard (AES) core and an

ultra-wideband (UWB)
transmitter (TX).

SVM
0/10 FP
and 0/80

FN

4.7.3 ML and Simulation based Approaches Conclusions
ML-based approaches constitute 77% of the total approaches in the ML and Simulation

category. While the LT simulation approaches 23% (Figure 4.11). As regards the

benchmark, Trust-HUB and ISCAS 89 were the most used for ML-based approaches while

ISCAS 89 and ISCAS 85 for LT simulation approaches (Figure 4.12). Finally, as far as

features were concerned, the most used features for ML-based approaches were netlists as

well as high resolution images and dynamic power. While for LT simulation approaches

were netlists, wire and nodes features (Figure 4.13).

36

Figure 4.11 Number of studies in ML and Simulation based approaches category

Figure 4.12 Benchmark in ML and Simulation based approaches category

1

3 3

3

2

2

2

0 1 2 3 4 5 6 7

ISCAS 85

ISCAS 89

Trust-HUB

ITC 99

Custom circuit

NA

Logic Testing Simulation ML-based

37

Figure 4.13 Features types in ML and simulation-based approaches category.

4.8 Auxiliary Approaches

The auxiliary approaches aim to enhance the effectiveness of the detection techniques

against HTs for the pre-silicon or post-silicon stage. Auxiliary approaches can be categorized

into two categories, the runtime monitoring approaches and the prevention-facilitation

approaches.

Runtime monitoring approaches aim to reduce the catastrophic effects of HTs when these

viruses are activated. Specifically, these approaches focus on identifying putatively

undetectable attacks and their effects from time-delayed HT activation. These studies can

develop techniques that can probe the behavior of signals of interest using finite state

machines or can generate and run multiple functionally equivalent tests to detect HT attacks.

Furthermore, these studies can find similar HTs, due to their parallel execution on the circuit

or to bypass HTs, imitating software HTs. Also, runtime monitoring approaches can detect

unused circuitry and label it as suspicious using verification tests. Subsequently, suspicious

circuitry is replaced with a software logic exception which allows the normal performance

of the system to bypass the HTs.

On the other, prevention-facilitation approaches aim to increase the difficulty for HT

insertion into ICs, mainly during the design phase, or facilitate the detection approaches.

Prevention-facilitation approaches use hardware security techniques like obfuscation,

layout-filler, path-delay fingerprinting to enhance the detection of HTs. The obfuscation

technique changes the transition mode of the circuit providing the ability to operate in two

1

1

1 3

2

1

1

2

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Nodes

Wires

Netlists

High resolution images

Delay

Transient supply current (IDDT)

Dynamic power

Frequency

Logic Testing Simulation ML-based

38

different modes; normal and obfuscated. The normal mode produces the desired output for

the circuit, while the obfuscated allows the circuit to malfunction in some of the input

patterns. The use of this technique makes the insertion of a malicious circuit into a system

more difficult. Layout-filler techniques are used to fill the empty spaces of a circuit with

filler cells to prevent the insertion of additional components. However, these techniques

cannot prevent the malicious conversion of a transistor set or the addition of a circuit that

does not require additional layout space. Another way to detect HTs is based on synthesis

algorithms based on path-delay fingerprints. These techniques improve the HTs detection

probability by minimizing the maximum delay shortest path of the circuits.

4.8.1 Runtime Monitoring Approaches
In 2015 Ngo et al. [112] developed a runtime monitoring approach for the detection of HTs.

Specifically, they developed an assertion approach for identifying and validating high-level

important behavioral invariants through an integrated on the circuit, hardware property

checker. The results showed that this approach could detect HTs in circuits with varying

system overhead and modify the protection levels correspondingly. In the study [128], the

authors developed a general methodology based on runtime monitors for the identification

and detection of HTs attacks through burst mode communication. Specifically, they designed

a runtime monitor approach based on the analysis of vulnerable paths. The statistical and

experimental analysis showed that this technique had low area and power overhead

compared to other monitor approaches and could easily be used without requiring extra

information of IP modules. Furthermore, authors in the study [129], developed three low-

overhead runtime approaches based on power/thermal features of infected and normal

circuits for the detection of HTs. The first approach was a sensor-based approach based on

thermal features extracted from the thermal sensors. In the second approach was used a filter

known as the Kalman filter for the tracking of circuits thermal profiles. The third approach

combined the Kalman filter with leakage power features of the circuits to track the thermal

profiles. The simulation results verified that all the approaches were able to detect HTs

effectively. In Table 4.5 is presented the summary of RM approaches.

Table 4.5 Summary of RM approaches

Authors
Observed
Features

Feature
Number Functionality Benchmark Type

39

[112]
Critical

behavioral
invariants

Features
number adapt
according to
the circuit

Configurable
Security
Monitor

Microcontroller Circuit:
LEON3 Simulation

[128]
Handshaking

protocol
features

Features
number adapt
according to
the circuit

Configurable
Security
Monitor

Trust-HUB:
AES-T100, AES-T1000, AES-T1100,
AES-T1200, AES-T1300, AES-T1400,
AES-T1500, AES-T200, AES-T2000,
AES-T2100, AES-T300, AES-T400,
AES-T500, AES-T600, AES-T700,

AES-T800, AES-T900

Experimental

[129] Thermal and
power profiles 2

Variant-
Based

Parallel
Execution

Trust-HUB:
AES-T1700, BasicRSA-T200, MC8051-
T300, MC8051-T400, MC8051-T600,
RS232-T400, RS232-T900, S38417-

T300, PIC16F84-T100, PIC16F84-T200

Simulation

4.8.2 Prevention & Facilitation Approaches
An obfuscation-based technique was developed by Kamali et al. [130]. The authors

developed an obfuscation-based method via embedded key features for the protection of ICs

against HTs attacks. The simulation results showed that their method could defend ICs

effectively. The same group in the study [131] proposed again an obfuscation-based method

for the defense of IP-piracy and reverse engineering approaches via the replacement of parts

of logic design with programmable logic routing blocks. In 2012 Salmani et al. [110]

developed an improving HTs detection technique based on analysis of the transition

generation time and dummy flip-flop insertion. Specifically, the authors developed a method

based on dummy multiplexors to be able to remove rare trigger conditions, reduce the

transition generation time, and increase the activity of HTs for the detection of HTs. In the

study [132], the authors proposed a layout-filler based on a dummy circuit insertion

technique against HTs attacks. This technique is identified and replaced the unused resources

of a circuit with dummy logic cells. Experimental results showed that the proposed study

was effective for Field Programmable Gate Arrays (FPGAs) with no cost on power or

performance. In 2014 Nejat et al. [133] developed an approach for improving HT detection

based on path-delay fingerprinting and an effective test-vector selection scheme. The

fundamental idea behind this method was to test the circuit at the appropriate frequencies.

Each path was examined at a clock cycle with a period equal to the path's delay. The results

showed that this method improves the detection of HTs with low area overhead. The same

group in the study [134], developed a path-delay fingerprinting-based method for the

40

detection of HTs. Specifically, they developed a logic-level synthesis retiming algorithm

that shortened for each node of a circuit the connection paths to minimize the communication

delay. The results showed that the shorted paths improve the detection of HTs. In Table 4.6

is presented the summary of PF approaches.

Table 4.6 Summary of PF approaches

Authors
Observed
Features

Feature
Number Functionality Benchmark Type

[130]
Several

embedded key
numbers

1 Obfuscation
ISCAS 85:

C2670, C3540, C5315, C6288,
C7552

Simulation

[131]

Fully
programmable

logic and routing
blocks

2 Obfuscation

ISCAS 85:
C432, C499, C880, C1355,

C1908, C2670, C3540, C5315,
C7552

Simulation

[110]

Features based on
average clock

cycles per
transition

1 Dummy Circuit Insertion ISCAS 89:
S38417 Simulation

[132]
Low-level

dummy logics
(LLDLs)

N/A Layout Filler Xilinx FPGA Circuit:
Virtex-II Experimental

[133]
Features based on

path-delay
fingerprinting

1

Improvement of HT detection
based on path-delay fingerprinting

and an effective test-vector
selection scheme

ISCAS 89:
S713, S1423, S5378, S13207,

S35932
Experimental

[134]
Features based on

path-delay
fingerprinting

1

Enhance HTs detection based on
the improvement of the path-delay

fingerprinting technique via a
logic-level synthesis retiming

algorithm

ISCAS 89:
S208, S344, S1196, S1238,

S1494, S9234, S13207, S38417

Simulation/
Experimental

4.8.3 Auxiliary Approaches Conclusions
PF approaches constitute 67% of the total approaches in the Auxiliary category. While the

RM approaches 33% (Figure 4.14). As regards the benchmark, Trust-HUB and custom

circuits were the most used for PF approaches, while ISCAS 89 and ISCAS 85 for RM

approaches (Figure 4.15). Finally, the most used feature for PF approaches was the delay.

While for RM approaches the most used features were thermal power, handshaking protocol

and behavioral invariants features (Figure 4.16).

41

Figure 4.14 Number of studies in Auxiliary based approaches category

Figure 4.15 Benchmark in Auxiliary based approaches category

2

1 1

2

3

0 0.5 1 1.5 2 2.5 3 3.5

Trust-HUB

Custom circuit

ISCAS 85

ISCAS 89

Runtime monitoring Prevention and facilitation

42

Figure 4.16 Features types in Auxiliary based approaches category

4.9 Countermeasures Against Hardware Trojans Conclusions

Since 2007, HT detection techniques have emerged as necessary tools for maintaining the

reliable, secure and highly stable operation of virtually every available IC type. Depending

on the underlying mechanism, the functionality and the manufacturing phase at which an HT

detection method operates, we have grouped available techniques in three categories. Each

category was further subdivided depending on specific functionalities related to the detection

process. SCA-based approaches consist 24% (7 out of 29) of the total examined approaches.

On the other, ML-based and simulation approaches consist 45% (13 out of 29) of the total

approaches while the Auxiliary approaches consist of the remaining 31% (9 out of 29)

(Figure 4.17).

As regards the benchmark, ISCAS 89 was the most frequently utilized benchmark with 34%

(10 out of 29) of the total amount of studies. ISCAS 89 is especially used from ML-based,

LT simulation and PF approaches. The next most used benchmark was the custom circuits

with 24% (7 out of 29) and used especially for SCA-based power analysis and ML-based

approaches. While the next most used benchmark was ISCAS 85 and Trust-HUB with 17%

(5 out of 29) respectively. ISCAS 85 is mostly used for SCA-based power analysis and

auxiliary PF approaches and Trust-HUB from RM and ML-based approaches (Figure 4.18).

Depending on the mode of operation and functionality, HT detection studies relied on a wide

spectrum of features for training their models or extracting decision making rules. Delay,

netlist and transient supply current were the most frequently used features. Specifically, the

1

1

1

1

1

1

1

2

0 0.5 1 1.5 2 2.5

Behavioral invariants

Handshaking protocol

Thermal power

Embended keys

Logic and routing blocks

Clock cycles

Low level dummy logics

Delay

Runtime monitoring Prevention and facilitation

43

delay was the most frequently used feature with 17% (5 out of 29) and was used mostly for

SCA-based time analysis and PF approaches. While netlist and transient supply current were

the next most used features with 14% (4 out of 29) respectively. Netlists are used exclusively

for ML-based approaches and transient supply current for SCA-based power analysis

approaches. The remaining studies depended on high-resolution imaging, dynamic and

quiescent supply current power (Figure 4.19).

Figure 4.17 Number of studies for all the categories

44

Figure 4.18 Benchmark for each countermeasure category

Figure 4.19 Features types for each countermeasure category

2

2

1

1

1

2

1 1

2

3

1

3

3

2

3

2

2

0 2 4 6 8 10 12

Trust-HUB

Custom circuit

ISCAS 85

ISCAS 89

ITC 99

NA

SCA-based power analysis SCA-based time analysis Runtime monitoring

Prevention and facilitation Logic testing simulation ML-based

3
2

2

1
1
1
1
1
1
1

2

1
1
1

1
1

3
2
2

1

0 1 2 3 4 5 6

Behavioral invariants
Handshaking protocol

Thermal power
Embended keys

Logic and routing blocks
Clock cycles

Low level dummy logics
Delay

Transient supply current
Quiescent supply current

Nodes
Wires

Netlists
High resolution images

Dynamic power
Frequency

SCA-based power analysis SCA-based time analysis Runtime monitoring

Prevention and facilitation Logic testing simulation ML-based

45

 GAINESIS: Generative Artificial Intelligence NEtlists

SynthesIS

5.1 Introduction

In this chapter, we present our methodology. We list the steps needed to create an ML-based

model as well as we mention the importance of the data set and the features. We present with

details our scheme and finally, we analyse each step of our scheme in detail.

Must be mentioned that developing a model based on the principles of ML or DL is a costly

process in both time and computing power. Depending on the problem, the size of the data

set, the size, type and quantity of features contained in the data set as well as the algorithms,

and the set of parameters that will be used and combined for the development of the new

ML or DL-based model, time and computing power can vary significantly from model to

model. Until today, ML-based models need significantly more time for training and testing

than DL-based models. The reason is that ML-based algorithms for the development of a

model are built to use the Computer Process Unit (CPU) and not the Graphic Process Unit

(GPU). On the other, DL-based algorithms can use either CPU or GPU for the training and

evaluation of the development model. In Figure 5.1 we present the steps for the development

of an ML or DL-based model.

The development of GAINESIS was based on Python v3.6 [135] and all benchmarks were

performed on an Intel X-Series I7-7740X computer system equipped with the NVIDIA GTX

1060 GPU. Tensorflow-GPU v1.3 [136], Keras v2.0 [137], Scikit-learn [138], the XGBoost

library [139] and Jupyter Notebook [140] environment was used to develop all the tested

GAN and ML models.

46

Figure 5.1 Steps for the development of an ML or DL-based model

5.2 Scheme of GAINESIS Methodology

Initially, all circuit benchmarks in Verilog format (1) were downloaded from the Trust-HUB

repository. Design Compiler NXT and the FreePDK45nm open cell library were used to

design the GLN phase of the circuits, a process also known as GLN synthesis (2).

Subsequently, in-house scripts were developed to generate and extract area, power and time

analysis features for each of the designed GLN benchmarks (3). The initial real data set

consisted of 880 samples, 18 TF and 862 TI, and the features utilized (N = 11) were number

of ports, number of nets, number of cells, number of sequential cells, number of references

(number of multiplexers and number of gates), net switching power, total dynamic power,

combinational switching power, combinational total power, total switching power and total

power (4). For the development of our initial real-data-based data set classifier we split our

initial real data set into two sets, a training (80%, 704 samples) and a test (20%, 176 samples)

set (5 and 6). The training of the seven ML-based classifiers was implemented based on the

training set. Specifically, the seven models are based on seven algorithms, GB [82], k-nearest

neighbors (KNN) [90], logistic regression (LR) [98], multilayer perceptron (MLP) [41], RF

[83], SVM [93] and XGB [139]. It is worth mentioning that XGB was used for the first time

for the classification of HTs at the GLN phase. For the development of each classifier, we

used and combined a variety of hyperparameters to optimize each classifier (7). For our

initial real data set we selected the best-performing classifier based on Precision, Sensitivity,

Specificity and F1-score metrics (8), which was a GB-based classifier (9).

Next, we explored our real training data set and found that TI circuits have a larger area and

consume more power compared with TF circuits (10). From the exploration of our real data

set, it became evident that the Trust-HUB initial real data set is highly imbalanced. We

47

postulated that GANs can be used to remedy this problem and provide arbitrary numbers of

synthetic TF and TI feature vectors for training robust ML classifiers. Four GAN models

were developed based on the vanilla GAN [84], CGAN [85], WGAN [86], and WCGAN

[87] algorithms. After the training of our four models, we optimized and evaluated them

(11), and we picked the models with the best and the worst performances (12 and 13). Next,

we synthesized new generated data sets based on our best and our worst-performing models

(14 and 15). We combined the new generated data sets from our best and worst models with

the initial real training data set to produce our mixed data sets (16 and 17).

Furthermore, we used all of the new data sets for the development and comparison of our

new GB-based classifiers (18). For the development of the new GB-based classifiers, each

of the data sets was split into two sets, a test (20%) set and a training (80%) set (19 and 20).

Again, the training of the new GB-based classifiers was implemented based on the training

sets (21) and their evaluation was implemented based on the test sets. We selected as the

new improvement GB-based classifier the best-performing classifier based on Precision,

Sensitivity, Specificity and F1-score metrics (22), which was the GB-WCGAN-Mixed-600-

based classifier (23).

Our next step was to compare our initial real GB-based classifier with our new best GB-

WCGAN-Mixed-600-based classifier. Thus, we evaluated our GB-WCGAN-Mixed-600-

based classifier with our initial real test set (24). Finally, our last step was to compare our

best GB-WCGAN-Mixed-600 classifier with existing methods (25). Our scheme is

illustrated in Figure 5.2. It needs to be mentioned that for the development of ML-based

models, we used a 10-fold cross-validation process, which was repeated 50 times on each

training set. The performance of the algorithms on the test set was implemented using a score

cutoff of 0.5.

48

Figure 5.2 Scheme of our Artificial Intelligence-based approach for safeguarding

integrated circuits at gate-level netlist phase against hardware Trojans, GAINESIS.

5.3 Data set

Every year more and more ML/DL-based approaches are developed as countermeasures

against HTs. These approaches are aimed at classifying or detecting infected with HTs

circuits from normal uninfected circuits. Also, some approaches are used to enhance the

classification or detection methods. So, the development of these types of approaches needs

a quality data set that will contain a sufficient number of quality samples and features to be

able to train the ML/DL-based model more efficiently.

The data set can be divided into three categories, structured, unstructured and semi-

structured. Structured data is data that follows a pre-defined data model and is thus easy to

analyze. Structured data is presented in a tabular format, including relationships between

rows and columns. Excel files and SQL databases are common examples of structured data.

Each of them has sortable organized rows and columns. Unstructured data is information

that lacks a predefined data model or is not organized in a specific way. Common examples

of unstructured data include text, image, video or audio files. Semi-structured data is a type

of structured data that does not follow the rules of structured data. However, tags or other

markers are used to distinguish semantic pieces and enforce hierarchies of records and fields

inside the data. Examples of semi-structured data include JSON and XML files.

49

As mentioned, the data set plays a significant role in the development of a robust ML- or

DL-based model. Specifically, the data set before being used for the development of a model,

must be cleared from unnecessary values and organised. For example, the data set must be

checked for consistency, cleared of zeros and/or unspecified values, and labeled where

needed. An unreliable data set like a data set with imbalanced samples per class leads to the

development of unreliable models. A type of unreliable model is a model that was learned

to over-classify a class compared with another class. Due to the lack of samples for a class,

the model has learned to under-classify this class compared with the other one.

Must be mentioned that each sample or feature represents a measurable piece of data that

can be used for analysis. The features which are included in a data set can vary widely

depending on the problem which is analyzed. Features are the basic building blocks of the

data set. The quality of the features in a data set has a major impact on the quality of the

insights which will be gained during the development of the model. For the development of

a model, the developer must understand the goals of the project and select the values of the

appropriate features for the training of the model. There are various techniques for improving

the quality of a data set features like feature selection and featuring engineering. These

techniques require extensive user experience for proper application. For the creation of the

model the features which will be used must be scaled. Scale methods transform features by

scaling each feature to a given range. The most common scale methods are standard and

min-max scale methods. Standard scaler assumes data is normally distributed within each

feature and scales them such that the distribution is centered around 0, with a standard

deviation of 1. Centering and scaling happen independently on each feature by computing

the relevant statistics on the samples in the training set. On the other, the min-max scaler

scales and translates each feature individually such that it is in the given range on the training

set, e.g., between zero and one. This scaler shrinks the data within the range of -1 to 1 if

there are negative values. We can set the range like [0,1] or [0,5] or [-1,1]. Below are

presented data sets that were built and used for the training of models as countermeasures

against HTs.

5.3.1 Initial Data Set Development
As mentioned, the process of data set development is the most critical step for the

development of a robust ML model. In this instance, the data set should consist of circuits

with diverse types, sizes and HT functions. We developed our data set by analyzing all

benchmarks accessible in the Trust-HUB benchmark library, but we were not able to meet

50

all the requirements of diversity in size and function through the lack of diversity in terms

of the size and function of Trust-HUB benchmarks. Our first step was to design, with the

Design Compiler NXT tool and FreePDK45nm circuit library [141], the TF and TI circuit

benchmarks of Trust-HUB, which were in Verilog form. Next, with custom scripts we

extracted area, power and time features from the design analysis produced from the Compiler

NXT tool. The initial extracted features were 51 in number, but many produced zero or not

available feature values. So, we cleaned our data set of these features and prepared it for the

development of our method. As a result, our data set consisted of 11 features: five area and

six power analysis features (Table 5.1). Specifically, the five area features were the number

of ports, nets, cells, and sequential cells, as well as the number of gates and multiplexers, or

according to the Design Compiler NXT the number of references, which is how we report it

in this thesis. The six power features were the net switching power, combinational switching

power, total switching power, total dynamic power, combinational total power, and total

power of each designed circuit. So, our initial real data set consisted of a total of 880

designed circuits. From the 880 circuits, 18 were normal or TF circuits which consisted of

positive samples with a class label equal to one (label = 1). The 862 were modified normal

circuits infected with HTs or TI, which consisted of negative samples with a class label equal

to zero (label = 0). It must be mentioned that we named our initial real data set the REAL-

880 data set. So, our initial REAL-880 data set consisted of a total of 880 designed samples.

From the 880 samples, 18 were TF and 862 were TI. For the training, we used 704 samples,

14 TF and 690 TI (80%), and for the evaluation 176 samples, 4 TF and 172 TI (20%).

Table 5.1 Table with our eleven area and power analysis features

Analysis Feature

Area

Number of ports
Number of nets
Number of cells

Number of sequential cells
Number of references

Power

Net switching power
Total dynamic power

Combinational switching power
Combinational total power

Total switching power
Total power

51

5.4 Machine Learning Classifiers Development

The next step for the development of an ML-based model includes the selection of a suitable

ML-based algorithm for the training of our model. For the development of an ML-based

model, there is often more than one algorithm that can be used. The type of problem for

which we aim to build our model is the most important criterion for selecting the most

suitable algorithm for its development. According to this criterion, we can choose more than

one algorithm which is indicated as a solution for our problem. Another criterion consists of

the structure of the data set which will be used for the training and evaluation of the model.

According to the features of the data set maybe we need to choose other types of algorithms.

Also, it is significant to know the complexity and the speed of each algorithm, because each

algorithm needs specific computing power, according to the parameters uses for the

development of a model. There is a case that we cannot build our model due to lack of

computer power. Must be mentioned that choosing more complex algorithms does not

necessarily mean that it will achieve maximum results.

The process of training a model is the most important step of ML methodology because

according to this step we produce our final ML-based model. Each training step consists of

updating the weights and the biases. Training a model simply means learning/determining

good values for all the weights and biases based on our data set samples. A model can be

created based on labeled data samples in supervised learning and trying to leak inferences

from not labeled data in unsupervised ML. For the training to be used a set of

hyperparameters needs to update the weights to have better results from cycle to cycle. So,

as the number of training steps grows then we can get more accurate results. However, before

getting into the training process we should tweak the parameters of the model and experiment

with the different results, to get the optimal ones.

To be able to develop our ML-based classifier for our REAL-880 data set we trained and

optimized seven ML-based classification models. It must be mentioned that for the training

and optimization of each classifier we used a combination of the appropriate

hyperparameters based on each ML-based algorithm, which consisted of a wide range of

values. The values given in each parameter were related to the type and size of the features

of the training set, as well as to the computing power of our system.

52

5.4.1 GB-based Classifier
GB as mentioned consists of a member of the model family and can handle features with

low predictive power internally. GB models are parts of ensemble learning algorithms,

which rely on a collective decision from inefficient prediction models known as decision

trees. During the boosting step, each new tree is based on a modified version of the original

data set. To begin, GB constructs a decision tree and assigns equal weight to each

observation. Following the initial tree assessment, the weights for the easy-to-classify

observations decrease while the weights for the difficult-to-classify observations grow.

Then, the next tree grows on the weighted data, attempting to enhance the first tree's

predictions. The new model is an amalgamation of the first and second trees. The

classification error is calculated, and a third tree is built to forecast the corrected residuals.

This technique is performed for a set number of iterations until convergence is reached. The

final ensemble model's forecast is the weighted total of the predictions provided by all

previous model iterations. The most common hyperparameters for the training of GB-based

models are learning rate, number of estimators, max tree depth and max features. Number

of estimators consists of the total number of sequential trees to be modeled. Max tree depth

parameter controls the depth of the individual trees. And max features parameter is the

number of features that will be used for the best split of the model. In Figure 5.3 is presented

a typical structure of a GB algorithm.

Figure 5.3 GB algorithm

GB-based classifier development is based on the combination of four hyperparameters:

learning rate, max tree depth, number of estimators and max features. The hyperparameter

learning rate controls the gradient descent by evaluating the contribution of each tree to the

final result. For the training of our GB-based classifier we used a list of learning rate values

from 0.05 to 1. The number of estimators hyperparameter represents the total number of

sequential trees to be modeled. We used a list of the number of estimators, with values from

10 to 100. The max tree depth hyperparameter controls the depth of the individual trees. We

53

used a list of max tree depth values from 1 to 10. Furthermore, the max features parameter

represents the number of features that will be used for the best split. A list of max features

values from 1 to 11 was used. The best combination of hyperparameters for our REAL-880

data set was: learning rate 0.05, number of estimators 10, max tree depth 11 and max features

10. In Table 5.2 are presented the range of the hyperparameters used and combined for the

development of our GB-REAL-880 classifier. Also, in Figure 5.4 are presented the

histograms with the most important features for the development of our GB-REAL-880

classifier. The “conditional total power” with “numbers of ports” and “number of cells” were

the most important features. Those features helped our model to increase the classification

between the two given classes.

Table 5.2 Table with the range of hyperparameters for the GB-REAL-880 classifier

Hyperparameter Range
Learning rate 0.05 – 1

Number of estimators 10 – 100
Max tree depth 1 – 10
Max features 1 – 11

Figure 5.4 Feature importance for GB-REAL-880 classifier

5.4.2 KNN-based Classifier
KNN is a type of IB learning that can be used for solving supervised regression and

classification problems simply and easily. The KNN algorithm is based on the assumption

that the same things exist in a close area. In other words, similar things are close to one

54

another. KNN is based on the idea of similarity (also known as distance, proximity, or

closeness) figuring the space between points on a graph. There are various methods of

calculating distance, and one way might be preferable depending on the problem. The KNN

algorithm is initially loaded with the training data set, which is commonly referred to as x,

and their goal values, which are referred to as y. Goal value y needs to be classified. Then is

initialized k to a preferable number of neighbors and for each data sample is computed the

distance between the sample whose target value is wanted to classify. Next, are added both

the index and the distance of the query example to an ordered list of indices and distances

and sort this list in ascending order (from smaller to bigger), with the distance as order

criteria. Finally, are picked the first k entries from the sorted list are got the labels of the

selected k entries. So can be returned in the form of the k labels. Some of the most often

used hyperparameters for the training of a KNN-based model are a number of neighbors,

leaf size and weights metrics. A number of neighbors are used to returned indices of and

distances to the neighbors of each point. Leaf size parameter that is to say the maximum

number of points a node can hold. Weights parameter is used to approximate the optimal

degree of influence of individual features using a training set. When successfully applied

relevant features are attributed a high weight value, whereas irrelevant features are given a

weight value close to zero. In Figure 5.5 is presented a typical structure of a KNN algorithm.

Figure 5.5 KNN algorithm

For the development of our KNN-based classifier, we used five hyperparameters: number of

neighbors, distances, leaf size and weights. The number of neighbors hyperparameter is the

core deciding factor. For this hyperparameter, we used a list of values from 1 to 60. Distances

were used for the KNN classifier to be able to calculate the distances between the point and

points in the training set. On this occasion, we used a list of distance values from 1 to 10.

The leaf size parameter defines the maximum number of points a node can hold. We used a

list of leaf size values from 1 to 50. The weights parameter gives more weight to the points

which are nearby and less weight to the points which are farther away. The uniform and

55

distance weights were used for the training and optimization of our KNN-based model. The

best combination of hyperparameters for our REAL-880 data set was: number of neighbors

1, distances 1, leaf size 1 and weights ‘uniform’. In Table 5.3 are presented the range of

hyperparameters used and combined for the development of our KNN-REAL-880 classifier

for the real data set.

Table 5.3 Table with the range of hyperparameters for the KNN-REAL-880 classifier

Hyperparameter Range
Number of neighbors 1 – 60

Distances 1 – 10
Leaf size 1 – 50
Weights uniform, distance

5.4.3 LR-based Classifier
LR is a supervised ML algorithm used for classification problems, and specifically for

categorizing observations into a group of discrete classes. Although linear regression assigns

observations to a continuous number of values, LR applies on its output a transformation -

activation – function, called the logistic sigmoid function. It returns a probability value

which can then be matched with two or more classes. LR is used when the target – dependent

- variable is categorical. For example, to predict whether an email is a spam (1) or not (0)

(binary LR) or to predict whether a car with specific characteristics belongs to a model, etc.

(multiclass LR). In Figure 5.6 is presented a typical structure of an LR algorithm.

Figure 5.6 LR algorithm

For the training and optimization of our LR-based classifier, we used four hyperparameters:

solver, penalty, C and max iterations. The solver hyperparameter solves optimization

problems of the LR algorithm through coordinate descent (CD) algorithms. For this

parameter, we used Newton-CG [142], limited-memory Broyden–Fletcher–Goldfarb–

56

Shanno (LM-BFGS) [143], library large-scale linear LIBLINEAR [144], stochastic average

gradient (SAG) [145] and SAGA [146] CD algorithms. Penalties were used to shrink the

coefficients of the less contributed variable toward zero. We used three types of penalties:

l1, l2 and elasticnet. The C parameter controls the penalty strength; we used a list of C values

from 0.01 to 1000. The max iterations parameter is the maximum number of iterations taken

for the solvers to converge. A list of max iterations values from 100 to 7000 was used. The

best combination of hyperparameters for our REAL-880 data set was: solver ‘Newton-CG’,

penalty ‘l2′, C 0.01 and max iterations 100. In Table 5.4 are presented the range of

hyperparameters used and combined for the development of our LR-REAL-880 classifier

for the real data set.

Table 5.4 Table with the range of hyperparameters for the LR-REAL-880 classifier

Hyperparameter Range
Solver newton-cg, lm-bfgs, liblinear, sag, saga
Penalty l1, l2, elasticnet

C 0.01 – 1000
Max iterations 100 – 7000

5.4.4 MLP-based Classifier
ANNs are built as the model of neurons present in the human brain. Based on the philosophy

of ANNs the algorithm MLP consists of a feedforward ANN that generates a set of outputs

from a set of inputs. Specifically, an MLP is a neural network that connects multiple layers

in a directed graph, meaning that the signal route across the nodes is only one direction.

Aside from the input nodes, each node has a nonlinear activation function. MLP is frequently

utilized for supervised learning tasks. Common hyperparameters for an MLP model are

hidden layer sizes, activation, solver, alpha, max iterations and learning rate. Hidden layers

size is used for the creation of the hidden layers. The hidden layers are produced according

to the size value. Also, the hidden layer simply produces layers of mathematical functions

each designed to produce an output specific to an intended result. Activation hyperparameter

consists of an activation function that defines how the weighted sum of the input is turned

into an output from a node or nodes in a network layer. Solver parameter represents a

stochastic gradient descent-based optimizer for optimizing the parameters in the

computation graph. The alpha parameter is a regularization term, also known as a penalty

term, that combats overfitting by limiting the size of the weights. Increasing alpha may

57

alleviate high variance by encouraging smaller weights, resulting in a decision boundary plot

with fewer curvatures. An iteration is the number of times a batch of data is processed by

the algorithm. In the context of neural networks, this refers to the forward and backward

passes. As a result, each time you run a batch of data through the ANN, you complete an

iteration. The learning rate, in particular, is an adjustable hyperparameter used in neural

network training that has a tiny positive value, typically in the range of 0.0 to 1.0. The

learning rate determines how quickly the model adapts to a new situation. It could be the

model's most essential hyperparameter. In Figure 5.7 is presented a typical structure of an

MLP algorithm.

Figure 5.7 MLP algorithm

For the training optimization of our MLP-based classifier, six hyperparameters were used:

hidden layer sizes, activation, solver, alpha, max iterations and learning rate. The hidden

layer sizes parameter defines the number of hidden layers of the network. A list of hidden

layer size values from 10 to 50 was used. The activation function parameter was used to

introduce non-linearity into the output of a neuron. A neural network has neurons that work

in correspondence to weight, bias and their respective activation function. We used four

types of activation function: identity, logistic, Tanh and ReLU. The solver parameter

represents a stochastic gradient descent-based optimizer for optimizing the parameters in the

computation graph. We used LM-BFGS, SGD and Adam optimizer. Alpha is a parameter

for the regularization term, which combats overfitting by constraining the size of the weights.

A list of alpha values from 0.001 to 0.9 was used. The maximum number of iterations

parameter determines the solver. The solver iterates to this number of maximum iterations.

A list of 100–1000 values from the maximum number of iterations was used. The learning

rate parameter controls the rate of speed at which the model learns. We used three types of

learning rate: constant, adaptive and invscaling. The best combination of hyperparameters

for our REAL-880 data set was: hidden layer sizes 30, 30, 30, activation ‘ReLU’, solver

‘Adam’, alpha 0.0001, max iterations 500 and learning rate ‘constant’. In Table 5.5 are

58

presented the range of hyperparameters used and combined for the development of our MLP-

REAL-880 classifier for the real data set.

Table 5.5 Table with the range of hyperparameters for the MLP-REAL-880 classifier

Hyperparameter Range
Hidden layer sizes 10 – 50

Activation identity, logistic, tanh, relu
Solver lm-bfgs, sgd, adam
Alpha 0.001 – 0.9

Max iterations 100 – 1000
Learning rate constant, adaptive, invscaling

5.4.5 RF-based Classifier
RF consists of a summation of Decision Trees. The general idea of this technique is that a

mixture of learning models raises the general result. RF builds multiple decision trees and

merges them together to achieve the preciseness and stability of the prediction. In that way,

it prevents overfitting by creating random subsets of the features, building smaller trees using

these subsets and combining them to increase the overall performance. RF categorizes a

sample to the class with the maximum “votes” among each subtree. RF makes the model

more random while developing the trees. Rather than looking for the most significant feature

while splitting a node, it scans for the best element among a random subset of features. This

outcome in a wide variety that by and large results in a greater model. Some of the most

common hyperparameters for the training of an RF-based model are a number of estimators,

max features, max depth and min sample leaf. Number of estimators is the number of trees

that are used to construct before calculating the maximum voting or prediction averages. A

greater number of trees improves performance but needs more computer power. Max

features parameter is used to determine the maximum number of features RF is allowed to

try an individual tree. For instance, if the total number of variables is 100, we can only take

10 of them in the individual tree. Max depth parameter represents the depth of each tree in

the forest The deeper the tree, the more splits it has and the more information it captures

about the data. Min sample leaf parameter represents the minimum number of samples

required to be at a leaf node. In Figure 5.8 is presented a typical structure of an RF algorithm.

59

Figure 5.8 RF algorithm

For our RF-based classifier training optimization, we used four hyperparameters: number of

estimators, max features, max depth and min sample leaf. The number of estimators

parameter defines the number of trees in the algorithm. We used a list of the number of

estimator parameter values from 100 to 5000. The max features parameter defines the

number of features to consider when looking for the best split. We used auto, sqrt and log2

max feature values. The max depth parameter represents the depth of each tree in the forest.

The deeper the tree, the more splits it has, and it collects more information about the data. A

list of max depth values from 2 to 50 was used. The min sample leaf parameter consists of

the minimum number of samples required to be at a leaf node. We used values from 1 to 20

for this parameter. The best combination of hyperparameters for our REAL-880 data set was:

number of estimators 200, max features ‘auto’, max depth 10 and min sample leaf 2. In Table

5.6 are presented the range of hyperparameters used and combined for the development of

our RF-REAL-880 classifier for the real data set.

Table 5.6 Table with the range of hyperparameters for the RF-REAL-880 classifier

Hyperparameter Range
Number of estimators 100 –5000

Max features auto, sqrt, log2
Max depth 2 – 50

Min sample leaf 1 – 20

5.4.6 SVM-based Classifier
SVM is an algorithm intrinsically for binary problems. SVMs transform the input feature

space into higher-dimensional feature space using the kernel trick dot product. Each data

set’s sample distance can be found to a given dividing hyperplane. Margin is called the

minimum distance from the samples to the hyperplane. The transformed data can be

separated using a hyperplane, the dividing curve between distinct classes. The optimal

hyperplane maximizes the margin. Its goal is to classify a new sample by simply computing

60

the distance from the hyperplane. Based on global optimization, SVMs deal with overfitting

problems, which appear in high-dimensional spaces, making them appealing in various

applications [147][148]. Most used SVM algorithms include the support vector regression

[149], least squares SVM [150] and successive projection algorithm-SVM [151]. In other

words, an SVM is a linear separator that focuses on creating a hyperplane with the largest

possible margin. Its goal is to classify a new sample by simply computing the distance from

the hyperplane. On a two-dimensional feature space, the hyperplane is a single line dividing

the two classes. On a multi-dimensional feature space, where the data are non-linearly

separable an SVM cannot linearly classify the data. In this case, it uses the kernel trick. The

main concept has to do with the fact that the new multidimensional feature space could have

a linear decision boundary which might not be linear in the original feature space. Common

in use SVM hyperparameters is C, gamma and kernel. The C parameter instructs the SVM

optimizer how much you wish to avoid misclassifying each training example. For large

values of C, the optimization will select a smaller-margin hyperplane if it does a better job

of accurately classifying all of the training points. The gamma parameter defines how far a

single training example's impact extends, with low values indicating 'far' and large values

indicating 'near.' The gamma parameters can be thought of as the inverse of the radius of

influence of samples chosen as support vectors by the model. A kernel function is a way for

taking data as input and transforming it into the needed form for processing. The term

"kernel" is chosen because the collection of mathematical functions utilized in SVM

provides a window through which data can be manipulated. In Figure 5.9 is presented a

typical structure of an SVM algorithm.

Figure 5.9 SVM algorithm

We trained and optimized our SVM-based classifier according to three hyperparameters: C,

gamma and kernel. The C parameter is a regularization parameter. It controls the tradeoff

between the smooth decision boundary and classifying the training points correctly. C values

from 0.0001 to 100 were used. The gamma parameter defines how far the influence of a

61

single training example reaches. We used scale and auto gamma values. The kernel

parameter specifies the kernel type to be used in the algorithm to improve the classification

accuracy of the classifier. We used four types of kernels: linear, polynomial, gaussian radial

basis function (RDF) and sigmoid. The best combination of hyperparameters for our REAL-

880 data set was: C 20, gamma ‘scale’ and kernel ‘poly’. In Table 5.7 are presented the range

of hyperparameters which used and combined for the development of our SVM-REAL-880

classifier for the real data set.

Table 5.7 Table with the range of hyperparameters for the SVM-REAL-880 classifier

Hyperparameter Range
C 0.0001 –100

Gamma scale, auto
Kernel linear, polynomial, gaussian radial basis

5.4.7 XGB-based Classifier
XGB belongs to the family of ensemble learning methods. Sometimes, it could be

insufficient to depend on the results of only one ML method applied to our data. Ensemble

learning techniques use a systematic method to combine the predictive power of various

learning methods. The output of this combination is a model that provides the totaled result

from smaller-weaker- models. Most of the time, we use the XGB algorithm with decision

trees.

For the training and optimization of our XGB-based classifier we used three

hyperparameters: learning rate, number of estimators and max depth. The learning rate

parameter controls the gradient descent. We used a list of learning rate values from 0.05 to

1. The number of estimators hyperparameter represents the total number of sequential trees

to be modeled. We used a list of the number of estimators values from 10 to 100. The max

tree depth hyperparameter controls the depth of the individual trees. We used a list of max

tree depth values from 1 to 11. Furthermore, the max features parameter represents the

number of features that will be used for the best split. A list of max features values from 1

to 11 was used. The best combination of hyperparameters for our REAL-880 data set was:

learning rate 0.25, number of estimators 60 and max depth 5. In Table 5.8 are presented the

range of hyperparameters which used and combined for the development of our XGB-

REAL-880 classifier for the real data set.

62

Table 5.8 Table with the range of hyperparameters for the XGB-REAL-880 classifier

Hyperparameter Range
Learning rate 0.05 – 1

Number of estimators 10 – 100
Max tree depth 1 – 11

5.5 Machine Learning Classifiers Evaluation

Once we have completed the steps of data collection and preparation, and after we select

algorithms and train our model, it is time to evaluate our model. For the evaluation of our

model is used a test set which mainly consisted of 20% of the total data set and the samples

of this set are unknown to our model. For example, in the case of HTs classification, the test

set consisted of unknown infected and free circuits features which the model will process for

the first time and needs to classify.

In this thesis, for the evaluation of the performance of ML algorithms we used Accuracy,

Precision, Recall or Sensitivity, Specificity, 1-Specificity and F1-score metrics. To evaluate

the mentioned metrics, we used the values True Positive (TP), False Positive (FP), False

Negative (FN) and True Negative (TN). The TP value represents the number of TI circuits

classified as TI, while the FP value represents the number of TF circuits that are wrongly

classified as TI. On the other hand, the FN value represents the TI circuits that are classified

as TF, and the TN value represents the number of TF circuits classified as TF. These values

are used for the calculation of Accuracy (1), Precision (2), Recall (3), Specificity (4), 1-

Specificity (5) and F1 (6) metrics. As mentioned, positive samples indicate the TI circuits

and our negative samples indicate the TF circuits. Accuracy is defined as the number of

correct predictions divided by the total number of predictions (1). Precision defines the total

number of TP values divided by the total number of all positive values (2). Recall defines

the total number of TP values divided by the total number of TP and FN values (3) and can

be characterized as the True Positive Rate (TPR). Specificity defines the total number of TN

values divided by the total number of TN and FP values (4) and can be characterized as the

True Negative Rate (TNR). 1-Sensitivity defines the total number of FP values divided by

the total number of TN and FP values (5). F1-score is the harmonic mean of Precision and

Recall and is defined from the multiplication of Precision by Recall and then by the number

two divided by the product of Precision and Recall (6). Additionally, based on these metrics

63

we produced the receiver operating characteristic (ROC) and Precision–Recall curves. The

ROC curve calculates the area under the curve (AUC) which is the measure of the ability of

a classifier to distinguish between classes and is used as a summary of the ROC curve, while

average precision (AP) summarizes a Precision–Recall curve as the weighted mean of the

precisions achieved at each threshold (7).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

1-Specificity = FP/(TN + FP) (5)

F1-score = 2(Precision * Sensitivity)/(Precision + Sensitivity) (6)

AP = ∑ [(Rn − R(n − 1)) ∗ Pn]𝑛𝑛 (7)

From Figure 5.10, it can be observed that for the training set all classifiers had a good

performance. On the other hand, for the test evaluation set, none of our classifiers performed

well. Specifically, the GB-based classifier was found to be the best-performing classifier on

the test set compared with the other six, with 97.72% Accuracy, 74.13% Precision, 62.20%

Recall and 66.08% F1-score (Figure 5.11). Additionally, good results were returned for

MLP-based classifier, with 96.59% Accuracy, 61.92% Precision, 61.62% Recall and 61.62%

and F1-score 61.92%. Thus, according to the results, the GB-based classifier was the most

efficient. Based on the GB algorithm, we developed and compared our real and our new

generated data sets.

64

Figure 5.10 Histograms of the performance of our seven ML models on our REAL-880

training set

Figure 5.11 Histograms of the performance of our seven ML models on our REAL-880 test

set

5.6 GAINESIS Development

Our first step for the development of our new synthetic data sets based on our generative

models was to explore our real training data set. As previously mentioned, the TI class

65

consists of 98% of our total initial real training data set, with 704 samples, and the TF class

only 2%, with 14 samples. From the exploration of our real training data set, we observed

that TI samples in their majority had greater mean values compared with TF. This is logical

because TI circuits are modified TF circuits with HTs and use extra area features such as

gates, cells, nets, etc., for the construction of the structure of the inserted HT. On the other

hand, these extra area features need more power. Thus, TI circuits consume more power

from TF (Figure 5.12).

Figure 5.12 Data distributions by feature and class

As it turns out, our real training data set is inadequate and unequal. The data are the most

significant part of any ML project. A lack of data samples and a lack of diversity data can

lead to mediocre ML projects. Additionally, supervised learning models require data, and

their performance is largely based on the size of the training data available. So, to solve these

functional problems, we needed to produce more TF samples. In the bibliography exist

different techniques for data synthesis on ML. In our study, we used a novel state-of-the-art

technique for data-synthesis-based DL, known as GANs. GANs algorithms mainly are used

for the field of computer vision and especially for image editing and data generation, and

66

use 2D or 3D (two- or three-dimensional) networks based on convolutional neural networks

(CNNs). In this thesis, we modified the networks to 1D (one-dimensional) networks based

on DNNs, because our data set consisted of 1D features.

To solve these functional problems which occurred from the lack of data samples, we

developed and compared four generative learning models. As mentioned, we developed four

models based on four different algorithms, GAN, CGAN, WGAN and WCGAN, for the

synthesis of new samples.

5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms
GL algorithms aim to generate new synthetic samples and they can be applied as a solution

for the imbalanced data sets. In this section is mentioned GL-based algorithms which can be

used for the synthesis of new samples for databases cases such as normal and infected

circuits. For the development of GL-based models must be developed as many models as the

number of classes that are contained in the data set. Then, depending on the algorithm which

will be used, there may be a need to applied some clustering algorithms. With the use of the

clustering algorithms the user will be able to cluster each given class to sub-classes in order

to be able to use the class label as an extra feature.

Specifically, GANs consist of two models, a generator and a discriminator. These are trained

simultaneously by an adversarial process. The generator learns to produce data that look real

based on real samples, while the discriminator learns to distinguish the real from generated

data to the point where it is no longer able to distinguish them. CGANs is an architecture

close to the original GANs, with the only difference being that it makes use of the class

labels feature. CGAN, with the use of the class labels feature, allows the targeted synthesis

of a given sample. WGANs are based on the philosophy of GANs, with the difference that

they use the Wasserstein distance metric for the development of the two models, generator

and discriminator. The Wasserstein distance metric provides a meaningful and smooth

representation of the distance between distributions. This algorithm enhances model stability

during training and gives a loss function that corresponds with sample quality. The last

algorithm which was used and compared for the generation of new samples was the

WCGAN. WCGANs have the same functionality as the WGANs, with the difference that

the CGANs make use of the class labels feature for the training of the generator and

discriminator models. Next, the hyperparameters that were used to improve the development

of our four models are presented.

67

For the development of our four models, we used and combined six hyperparameters:

learning rate, batch size, number of epochs, optimizer, number of units in a dense layer and

activation function. Each hyperparameter contained a wide range of values. The

hyperparameter learning rate controls the model in response to the estimated error each time

the model weights are updated. On this occasion, we used a list of learning rate values from

0.0001 to 0.001. The hyperparameter batch size defines the number of samples that will be

propagated through the network. We used a list of batch size values from 16 to 64. The

number of epochs hyperparameter specifies the time in which the learning algorithm will

process the whole training data set. We used a different number of epochs values from 1000

to 50,000. The optimizer hyperparameter affects the attributes of the neural network such as

weights and learning rate to reduce the losses. For the development of our models, we used

three optimizers: stochastic gradient descent (SGD) [152], Adam [153] and root mean square

propagation (RMSprop) [154]. The number of units in a dense layer hyperparameter affects

the effectiveness of our models. On this occasion, we used different numbers of units in a

dense layer, from 25 to 512. The activation function hyperparameter describes how the

weighted sum of the input is turned into an output from a node or nodes in a network layer.

Specifically, we used three activation functions: rectified linear unit (ReLU) [155], sigmoid

[156] and hyperbolic tangent (Tanh) [157] (Table 5.9).

Table 5.9 Table with the range of hyperparameters for the generative learning models

Hyperparameter Range
Learning rate 0.0001–0.001

Batch size 16–64
Number of epochs 1000–50,000

Optimizers SGD, Adam, RMSprop
Dense layer 25–512

Activation function ReLU, sigmoid, Tanh

So, as mentioned for the development of our four models we combined all the values of each

hyperparameter. The optimum hyperparameters combination was learning rate equal to

0.0005, batch size equal to 64, number of epochs equal to 50,000, optimizer being Adam,

number of units in a dense layer equal to 128 for the first layer, and activation function being

ReLU. It should be noted that for the development of the generator network for each layer,

68

we multiplied exponentially by the number two the number of units in a dense layer, for the

discriminator network we multiplied by number four the first dense layer, and for the other

layers we divided it by the number two. Additionally, for the first three dense layers of the

generator, the best activation function was ReLU, the same as for the discriminator, except

for the last fourth dense layer of the discriminator network, in which the best activation

function was sigmoid. The values given in each parameter were related to the type and size

of the features of the training set, as well as to the ability of the computing power of our

system.

In Table 5.10 and Table 5.11 is presented the generator network for each of our four models.

GAN- and WGAN-based models are different from CGAN and WCGAN because, as

previously mentioned, CGAN- and WCGAN-based models use as an extra feature the class

of the sample. Additionally, in Table 5.12 and Table 5.13 is presented the discriminator

network for each of our four models. The only difference between our models is in the input

layer, because CGAN- and WCGAN-based models, as previously mentioned, use as an extra

feature the class of the sample.

Table 5.10 GAN and WGAN models generator network

Layer Output Parameters
Input layer 1 (None, 11) 0

Dense 1 (None, 128) 1536
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643

Table 5.11 CGAN and WCGAN models generator network

Layer Output Parameters
Input layer 1 (None, 11) 0
Input layer 2 (None, 1) 0

Concatenate 1 (None, 12) 0
Dense 1 (None, 128) 1664
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643

69

Concatenate 1 (None, 12) 0

Table 5.12 GAN and WGAN models discriminator network

Layer Output Parameters
Input layer 1 (None, 11) 0

Dense 1 (None, 512) 6144
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129

Table 5.13 CGAN and WCGAN models discriminator network

Layer Output Parameters
Input layer 1 (None, 12) 0

Dense 1 (None, 512) 6656
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129

5.7 GAINESIS Evaluation

To evaluate the performance of our models, we used metrics such as the Minmax and

Wasserstein loss functions. Specifically, the Minmax loss function reflects the distance

between the distribution of the generated data and the distribution of the real data, for GAN-

and CGAN-based models. GAN and CGAN algorithms use two Minmax loss functions, one

for the generator and one for the discriminator. A single measure of distance between

probability distributions yields both generator and discriminator losses. The generator can

only change one component of the distance measure in any of these schemes, the term that

represents the distribution of the fake. As a consequence, we eliminate the other term that

reflects the distribution of the actual data during generator training. The formula for minmax

loss is presented in Equation (8). D(x) estimates the probability that the real data instance x

is real for the discriminator. Ex is the expected value over all real data instances. G(z) is the

output of the generator when given noise z. D(G(z)) estimates the probability that a fake

instance is real for the discriminator. Ez is the expected value over all generated fake

instances G(z)). For the evaluation of a model in WGAN and WCGAN algorithms, the

discriminator does not classify instances but outputs a number. The discriminator aims to

70

increase the output for real instances rather than fake instances. For this reason, we use the

Wasserstein Discriminator Loss (9) and Generator Loss (10). Specifically, D(x) is the output

for a real instance at the discriminator. G(z) is the output when given noise z, at the generator.

D(G(z)) is the output for a fake instance at the discriminator.

From our four generative learning models, our WCGAN-based model was found to be the

best-performing model in epoch 47,000 of 50,000 epochs, with a generator loss value equal

to 0.102 (Figure 5.13) and discriminator loss value equal to 0.0984 (Figure 5.14). The next

best-performing model was our WGAN-based model for epoch 47,000 from 50,000 epochs,

with a generator loss value equal to 0.0995 (Figure 5.13) and discriminator loss value equal

to 0.114 (Figure 5.14), while our CGAN-based model’s best epoch was 48,000 from 50,000

epochs, with a generator loss value equal to 0.369 (Figure 5.13) and discriminator loss value

equal to 0.263 (Figure 5.14). Our GAN-based model was our worst-performing model, with

the best epoch being epoch 46,000 of 50,000 epochs, and a generator loss value equal to

0.453 (Figure 5.13) and discriminator loss equal to 0.273 (Figure 5.14).

Figure 5.13 Generator loss values of our four models for each epoch

Minmax Loss = Ex[log(D(x))] + Ez[log(1-D(G(z)))] (8)

Wasserstein Discriminator Loss = D(x)-D(G(z)) (9)

Wasserstein Generator Loss = D(G(z)) (10)

71

Figure 5.14 Discriminator loss values of our four models for each epoch

Additionally, we displayed for each epoch the ability of each model to synthesize new

generated samples based on real samples according to the most important features. From

this, we observed that our best-performing WCGAN-based model (Figure 5.15) was able to

synthesize better-generated samples compared with the other models and especially

compared with our worst-performing GAN-based model (Figure 5.16). To distinguish any

differences in the quality of the new generated samples and to confirm the evaluation of our

models, we synthesized new samples based on our best-performing WCGAN-based model

and based on our worst-performing model GAN-based model in order to develop new GB-

based classifiers.

Figure 5.15 Presentation of how our best-performing WCGAN-based model learned to

synthesize new generated samples based on real samples

72

Figure 5.16 Presentation of how our worst-performing GAN-based model learned to

synthesize new generated samples based on real samples

5.8 Synthesis of New Generated Data Sets

After we finished with the training, optimization, and evaluation of our four models, we

selected the best- and worst-performing models. As occurred previously, the model that

learned to synthesize new generated data similar to the real data was our WCGAN-based

model, while the model with the worst performance was our GAN-based model.

Additionally, to be able to observe any differences, we created differently sized data sets

from each model. As a result, our new generated data sets, which are based on our best-

performing WCGAN model, were named WCGAN-200, WCGAN-400 and WCGAN-600

according to the size of the sample. Additionally, our new generated data sets were based on

our worst-performing GAN model, and named GAN-200, GAN-400 and GAN-600. Next,

we mixed each new generated data set with the initial real training data set, not the test set,

to be able to evaluate our best new GB-based classifier in the real test data set. So, our mixed

data sets were WCGAN-Mixed-200, WCGAN-Mixed-400, WCGAN-Mixed-600, GAN-

Mixed-200, GAN-Mixed-400, and GAN-mixed-600. In total, we had 12 new data sets to

compare. As in the real data set, the new generated data sets’ TF circuits consisted of positive

samples, with a class label equal to one (label = 1), and TI circuits consisted of our negative

samples, with a class label equal to zero (label = 0). Additionally, as mentioned previously,

80% of each data set was used for the training of our new GB-based models, and 20% for

the evaluation. Next, we analyzed the details of each data set and how these were used for

the training and evaluation of our new GB-based models.

73

As a result, our new generated data sets were six in total, three for each model and three data

sets different in sample size. WCGAN-200 and GAN-200 data sets were our data sets

smallest in sample size and consisted of 432 samples, 216 TF and 216 TI samples. A total

of 345 samples, 171 TF and 174 TI, were used for the training, and 87 samples, 45 TF and

42 TI, were used for the evaluation of our new GB-based models. Our middle range data sets

were WCGAN-400 and GAN-400 data sets. They consisted of 864 samples: 432 TF and 432

TI samples. A total of 691 samples, 357 TF and 334 TI samples, were used for the training

and 173 samples, 75 TF and 98 TI samples, for the evaluation of our new GB-based

classifiers. Our large-sample generated data sets were WCGAN-600 and GAN-600. These

data sets consisted of 1296 samples, 648 TF and 648 TI samples. For the training of our new

GB-based classifiers, we used 1036 samples, 523 TF and 513 TI, and for the evaluation 260

samples, 125 TF and 135 TI. Furthermore, as well as our new generated data sets, our mixed

data sets were in total six in number. WCGAN-Mixed-200 and GAN-Mixed-200 data sets

each consisted of one in total from 1136 samples, 230 TF and 906 TI. From these 908

samples, 191 TF and 717 TI were used for the training and 228 samples, 43 TF and 185 TI,

were used for the evaluation. WCGAN-Mixed-400 and GAN-Mixed-400 data sets consisted,

respectively, of 1568 samples in total, 446 TF and 1122 TI. From these 1254 samples, 359

TF and 895 TI were used as a training set and 314 samples, 91 TF and 223 TI samples were

used as an evaluation set. Our last mixed data sets were WCGAN-Mixed-600 and GAN-

Mixed-600. Each one of these data sets had in total 2000 samples, 662 TF and 1338 TI

samples. The training set consisted of 1600 samples, 544 TF and 1056 TI samples while the

evaluation set consisted of 400 samples, 122 TF and 278 TI (Figure 5.17).

74

Figure 5.17 Histograms with the distribution of TF and TI samples for our 13 data sets

5.9 New Generated GB-based Classifiers Development

As mentioned, for the classification of our REAL-880 data set the best ML-based classifier

from the seven compared algorithms was the GB-based classifier. As a result, we based on

GB-algorithm for the classification of our new generated data sets. As previously for the

development of our new generated GB-based classifiers we used and combined a list of four

hyperparameters: learning rate, max tree depth, number of estimators and max features.

Specifically, we used a list of learning rate values from 0.05 to 1, a list of number of

estimators with values from 10 to 100, a list of max tree depth values from 1 to 10 and a list

of max features values from 1 to 11. In Table 5.14 are presented the best combination of

hyperparameters for each of the six new generated GB-based classifiers. Also, in Figure 5.18

are presented the most important features for each new generated GB-based classifier. It is

observed that the most important feature for the six classifiers was “number of nets”. While

for the GB-WCGAN-based classifiers the next most important feature was the “total

dynamic power” and for the GB-GAN-based was the “combinational total power”.

75

Table 5.14 Table with the range of hyperparameters for the new generated GB-based

classifiers

Classifier
Learning

rate
Number of
estimators

Max tree
depth

Max
features

GB-WCGAN-200 0.05 10 1 6
GB-GAN-200 0.05 10 1 3

GB-WCGAN-400 0.05 10 1 6
GB-GAN-400 0.05 10 1 3

GB-WCGAN-600 0.05 10 1 10
GB-GAN-600 0.05 10 2 3

(a) (b)

(c) (d)

76

(e) (f)

Figure 5.18 Concept graph presenting the most importance features: (a) GB-WCGAN-200

classifier; (b) GB-GAN-200 classifier; (c) GB-WCGAN-400 classifier; (d) GB-GAN-400

classifier; (e) GB-WCGAN-600 classifier; (f) GB-GAN-600 classifier

5.10 Mixed GB-based Classifiers Development

Our next step, was the development of mixed GB-based classifiers for the classification of

our mixed data sets. Again, for the development of our mixed GB-based classifiers we used

and combined a list of four hyperparameters: learning rate, max tree depth, number of

estimators and max features. Specifically, we used a list of learning rate values from 0.05 to

1, a list of number of estimators with values from 10 to 100, a list of max tree depth values

from 1 to 10 and a list of max features values from 1 to 11. In Table 5.15 are presented the

best combination of hyperparameters for each of the six mixed GB-based classifiers. Also,

in Figure 5.19 are presented the most important features for each mixed GB-based classifier.

It is observed that the most important feature for the six classifiers was “number of sequential

cells”. While for the GB-WCGAN-Mixed-based classifiers the next most important feature

was the “combinational total power” and for the GB-GAN-Mixed-based was the “number

of ports”.

Table 5.15 Table with the best values of hyperparameters for the mixed GB-based

classifiers

Classifier
Learning

rate
Number of
estimators

Max tree
depth

Max
features

GB-WCGAN-Mixed-200 0.75 40 10 4
GB-GAN-Mixed-200 1 20 9 3

GB-WCGAN-Mixed-400 0.05 50 2 9

77

GB-GAN-Mixed-400 0.05 20 4 8
GB-WCGAN-Mixed-600 0.05 20 6 7

GB-GAN-Mixed-600 0.05 10 5 7

(a) (b)

(c) (d)

(e) (f)

Figure 5.19 Concept graph presenting the most importance features: (a) GB-WCGAN-

Mixed-200 classifier; (b) GB-GAN-Mixed-200 classifier; (c) GB-WCGAN-Mixed-400

classifier; (d) GB-GAN-Mixed-400 classifier; (e) GB-WCGAN-Mixed-600 classifier; (f)

GB-GAN-Mixed-600 classifier

79

 Results

6.1 New Generated Data Sets Results

Our first step was to compare our six new generated data sets. So, we developed six new

GB-based classifiers, one for each data set. According to Figure 6.1 and Figure 6.2, both for

the training and the evaluation phase, our WCGAN-based data sets enhanced even a little

the performance of the classifiers compared with our GAN-based data sets. Specifically, the

GB-based classifiers for the evaluation phase obtained a 99.6% F1-score for our WCGAN-

200 data set, 99.86% F1-score for our WCGAN-400 data set and 99.94% F1-score for our

WCGAN-600 data set, while for our GAN-200 data set was obtained a 98.37% F1-score,

99.2% F1-score for our GAN-400 data set and 99.49% F1-score for our GAN-600 data set.

Additionally, from the above, it can be observed that the performance of the classifiers was

affected, and also by the size of the data set. Specifically, the data sets with more samples

enhanced the performance of the classifier compared with the data sets with fewer samples,

for both WCGAN-based and GAN-based data sets.

Figure 6.1 Histograms of the performance of our new GB-based classifiers on our new

generated training sets.

80

Figure 6.2 Histograms of the performance of our new GB-based classifiers on our new

generated test sets.

6.2 Mixed Data Sets Results

Our next step was to compare our six mixed data sets. As previously mentioned, mixed data

sets consisted of the new generated samples from our WCGAN-based and GAN-based

generative models, respectively, and the initial real training data samples from our REAL-

880 data set. According to Figure 6.3 and Figure 6.4 emerged the same conclusions as in the

comparison of the new generated data sets. Our best GB-classifier was the classifier that was

developed based on the WCGAN-Mixed-600 data set. Specifically, our new mixed GB-

based classifiers for the evaluation phase achieved a 95.08% F1-score for our WCGAN-

Mixed-200 data set, 97.39% F1-score for our WCGAN-Mixed-400 data set and 98.26% F1-

score for our WCGAN-Mixed-600 data set, while for our GAN-Mixed-200 data set was

obtained a 94.59% F1-score, 97.61% F1-score for our GAN-Mixed-400 data set and 98.11%

F1-score for our GAN-Mixed-600 data set.

81

Figure 6.3 Histograms of the performance of our new GB-based classifiers on our mixed

training sets.

Figure 6.4 Histograms of the performance of our new GB-based classifiers on our mixed

test sets.

6.3 All Data Sets Results

According to our results, our best new classifiers are based on WCGAN-Mixed-600 and

GAN-Mixed-600 data sets. These newly generated data sets, in combination with our real

82

training data set, managed to increase the F1-score for our new best-performing GB-based

classifiers by 32.18% and 32.03%, respectively (Figure 6.5).

To be able to distinguish extra details between the WCGAN-Mixed-600 and GAN-Mixed-

600 data sets we used ROC and Precision–Recall curves. Each GB-based classifier of each

data set was tested with the test sets of each other. According to Figure 6.6, it can be observed

that our WCGAN-600 (Figure 6.6 c,d) and WCGAN-Mixed-600 (Figure 6.6 g,h) data sets

significantly enhanced the classification procedure compared with our GAN-600 (Figure 6.6

e,f) and GAN-Mixed-600 data sets (Figure 6.6 i,j). Specifically, our GB-WCGAN-Mixed-

600 classifier, compared with the GB-GAN-Mixed-600 classifier, was able to classify with

better performance 99% AUC and 99% AP for not only the GAN-Mixed-600 data set but

also the REAL-880 data set, with 75% AUC and 16% AP compared with the GB-CGAN-

Mixed-600 classifier, which obtained 70% AUC and 41% AP for the WCGAN-Mixed-600

data set and 68% AUC and only 9% AP for the REAL-880 data set. So, our new best

classifier was the GB-WCGAN-Mixed-600.

Figure 6.5 Histograms of the performance of our 13 GB-based classifiers on our 13 test

sets.

83

(a) (b)

(c) (d)

(e) (f)

(g) (h)

84

(i) (j)

Figure 6.6 Concept graph presenting ROC and Precision-Recall curves: (a) ROC curve for

all the GB-based classifiers for the REAL-880 data set; (b) Precision–Recall curve for all

the GB-based classifiers for the REAL-880 data set; (c) ROC curve for all the GB-based

classifiers for the WCGAN-600 data set; (d) Precision–Recall curve for all the GB-based

classifiers for the WCGAN-600 data set; (e) ROC curve for all the GB-based classifiers for

the GAN-600 data set; (f) Precision–Recall curve for all the GB-based classifiers for the

GAN-600 data set; (g) ROC curve for all the GB-based classifiers for the WCGAN-Mixed-

600 data set; (h) Precision–Recall curve for all the GB-based classifiers for the WCGAN-

Mixed-600 data set; (i) ROC curve for all the GB-based classifiers for the GAN-Mixed-600

data set; (j) Precision–Recall curve for all the GB-based classifiers for the GAN-Mixed-600

data set

6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-

880 Classifier

To evaluate the effectiveness of our new GB-WCGAN-Mixed-600 classifier, we tested our

new classifier in the test set of our REAL-880 classifier.

As a result, as shown in Figure 6.7, our GB-WCGAN-Mixed-600 classifier for the REAL-

880 test set performed with 98% Accuracy, 74% Precision, 74.5% Recall and 74.25% F1-

score, while the GB-REAL-880 classifier for this set performed with 97.72% Accuracy,

74.13% Precision, 62.20% Recall and 66.08% F1-score. With our new GB-WCGAN-

Mixed-600 classifier we had an 8.17% increase in performance, which is satisfactory due to

the lack of a samples test set.

So, from the above our goal of generating new circuit samples based on area, power and time

analysis features from the GLN phase is validated, which would enhance the development

of a robust ML-based classifier, for the classification of TF and TI circuits. Our new

85

generated data sets, large in size, enhanced the classification of TF and TI circuits.

Specifically, throughout this process our first goal was to develop new generated data sets

to observe how significantly or not our new data sets could enhance the classification of TF

and TI circuits at GLN. Additionally, our next goal was to evaluate if our new data sets could

be used as a solution for the problem of a lack of samples, from which the field of

countermeasures against HTs suffers. The experimental results prove the achievement of our

goals, as our new WCGAN-Mixed-600 data set managed to develop a more effective

classification model for the classification of TF and TI circuits at the GLN phase of ASICs.

Figure 6.7 Histograms of the performance of our new best-performing GB-WCGAN-

Mixed-600 classifier compared with our GB-REAL-880 classifier on the REAL-880 test

set.

6.5 Comparison to Existing Methods

Our final step was to compare our best performing GB-WCGAN-Mixed-600 classifier with

existing methods. As be mentioned we named GB-WCGAN-Mixed-600 classifier as

ATLAS. So, we compared our ATLAS with two studies that can be found in the literature

that is based on SVM [24] and RF classifiers [25].

86

We chose 15 circuits that existing methods were tested on, to make the comparison with our

model fair Figure 6.8 and Table 6.1. Our ATLAS model exhibits the highest performance

compared to existing methods, with an average Precision and F1-score of 100%.

It is worth mentioning that our ATLAS classifier for HT classification is based on area and

power feature values that are extracted from the whole circuit. Therefore, we provide a

prediction for the entire circuit, labeling it as TF or TI. Both existing studies however, break

each circuit down to the level of nets. Each net is treated as an individual sample with its

own set of extracted features. Thus, Table 6.1 includes performance values with decimal

points for [24] and [25], while we provide a value for each circuit (i.e., RS232).

Figure 6.8 Histograms with the performance comparison between existing approaches and

our approach ATLAS.

2.
8%

92
.2

% 10
0%

5.
2%

74
.6

%

10
0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Hasegawa et al [34] Hasegawa et al [35] ATLAS

PRECISION F1-SCORE

87

Table 6.1 Table with the comparison of our method with existing methods for the same

benchmark

Test Circuits Precision F1-Score
[24] [25] ATLAS [24] [25] ATLAS

RS232-T1000 11.5% 92.3% 100% 19% 96% 100%
RS232-T1100 3.1% 78.3% 100% 5.9% 61% 100%
RS232-T1200 3.4% 100% 100% 6.5% 93.8% 100%
RS232-T1300 3.5% 100% 100% 6.7% 100% 100%
RS232-T1400 4.1% 100% 100% 7.8% 98.9% 100%
RS232-T1500 4.1% 97.4% 100% 7.9% 96.1% 100%
RS232-T1600 3.5% 90% 100% 6.7% 91.5% 100%
s15850-T100 2.9% 95.5% 100% 5.7% 85.7% 100%
s35932-T100 0.5% 100% 100% 1.1% 84.6% 100%
s35932-T200 0.6% 100% 100% 1.2% 15.4% 100%
s35932-T300 0.4% 96.8% 100% 0.7% 88.2% 100%
s38417-T100 0.8% 100% 100% 1.7% 50% 100%
s38417-T200 0.8% 100% 100% 1.5% 63.6% 100%
s38417-T300 2.6% 100% 100% 5.1% 85.7% 100%
s38584-T100 0.3% 33.3% 100% 0.6% 9.1% 100%

Mean 2.81% 92.2% 100% 5.21% 74.6% 100%

89

 Conclusions and Future Work

The HT detection field has been at the forefront of hardware security for the last two decades.

As the technological advancements require an ever-increasing complexity level of ICs, the

same trend can be observed in HT-based attacks, in their sophistication and elusiveness that

prevents detection at pre-silicon stages. However, the pace of advancement has not been the

same for the HT detection field, since the development of robust HT detection methods

requires abundant data in the form of HT-free and HT-infected circuits. This major obstacle

can be attributed to the lack of freely available IC designs, since the majority of ICs are

protected by IP rights. Public repositories such as Trust-HUB indeed provide free designs;

however, the supported ICs are limited both in terms of absolute numbers and in

function/size diversity.

To alleviate the imbalance problem in freely accessible IC design repositories, we propose

GAINESIS, a novel approach for generating synthetic HT-free and HT-infected GLN feature

vectors in ASICs from a WCGAN-based generative model and high-quality area and power

analysis features extracted by the Design Compiler NXT tool. Balanced synthetic data sets

of different sizes were generated and utilized to train several ML algorithms that are

frequently being applied in the HT detection field. This approach enabled us to evaluate

GAINESIS and extract results showing that our method can be effective in generating

synthetic feature vectors that can be used for training ML models, which can generalize the

original Trust-HUB test set and perform better than the models trained on the original

imbalanced data.

Even though GAINESIS is a novel approach that was able to marginally improve (~8% in

terms of F1 score) the performance of the original test set, it has the potential to open new

research avenues for the HT detection field, as it can also be applied in other pre-silicon IC

production phases such as RTL, P&R and GDSII. However, GAINESIS cannot remedy the

problem of the lack of numbers and diversity in terms of size and function that is present in

Trust-HUB and other freely accessible repositories. To have a better understanding of

GAINESIS’s ability to provide high-quality synthetic data, we need to assemble a

significantly larger and more diverse design set, and more importantly, designs that are

derived from real-world applications. For small laboratories, this is a costly and extremely

time-consuming effort. Instead, a consortium-level initiative needs to be established where

90

laboratories and companies from all over the world can contribute to this cause in a

crowdsourcing fashion, with the clear purpose of generating large and diverse data sets.

In the future, we will create our own small-in-size circuits, aiming to solve the lack of

diversity that is present in Trust-HUB, and through these circuits our GAINESIS tool will

be upgraded. In addition, we believe that a more efficient strategy for the detection and

mitigation of HT combines different techniques that complement each other. Therefore, we

will combine GAINESIS with other run-time and test-time techniques, such as the works in

[158][159][160] Our GAINESIS tool is available through this link: https://caslab.e-

ce.uth.gr/ToolsandDatabases.html.

91

References

[1] F. Plessas and G. Kalivas, “A subharmonically injected phase-locked loop for 5-GHz

applications”, Microwave and Optical Technology Letters, 2006, vol. 48, pp. 2158-

2162, doi: 10.1002/mop.21888.

[2] F. Plessas, A. Papalambrou, and G. Kalivas, “Subharmonic injection-locking and self-

oscillating mixer”, In Proceedings of the 2007 IEEE International Symposium on

Circuits and Systems, New Orleans, LA, USA, 27-30 May 2007, doi:

10.1109/ISCAS.2007.377952.

[3] E. Lourandakis, F. Plessas, and G. Kalivas, “A 0.5 - 5.5 GHz Distributed Low Noise

Amplifier”, ECTI Transactions on Electrical Engineering and Electronics and

Communication, 2008, vol. 6, no. 1, pp. 26–31

[4] F. C. Plessas, A. Papalambrou, and G. Kalivas, “A 5-GHz subharmonic injection-

locked oscillator and self-oscillating mixer”, IEEE Transactions on Circuits and

Systems II: Express Briefs, 2008, vol. 55, pp. 633-637, doi:

10.1109/TCSII.2008.921575.

[5] A. Tsitouras and F. Plessas, “Ultra wideband, low-power, 3-5.6 GHz, CMOS voltage-

controlled oscillator”, Microelectronics Journal, 2009, vol. 40, pp. 897-904, doi:

10.1016/j.mejo.2009.01.009.

[6] A. Tsitouras and F. Plessas, “Ultra-wideband, low-power, inductorless, 3.1-4.8 GHz,

CMOS VCO”, Circuits, Systems, and Signal Processing, 2011, vol. 30, no. 2, pp. 263-

285, doi: 10.1007/s00034-010-9220-6.

[7] F. Plessas, “A study of superharmonic injection locking in multiband frequency

dividers”, International Journal of Circuit Theory and Applications, 2011, vol. 39,

pp. 397-410, doi: 10.1002/cta.644.

[8] F. Plessas, A. Tsitouras, and G. Kalivas, “Phase noise characterization of subharmonic

injection locked oscillators”, International Journal of Circuit Theory and

Applications, 2011, vol. 39, pp 791-800, doi: 10.1002/cta.734.

[9] A. Tsitouras, F. Plessas, and G. Kalivas, “A linear, ultra wideband, low-power, 2.1-5

GHz, VCO”, International Journal of Circuit Theory and Applications, 2011, vol. 39,

92

pp. 823-833, doi: 10.1002/cta.670.

[10] F. Plessas, A. Tsitouras, and G. Kalivas, “5-GHz fully differential multifunctional

circuit”, International Journal of Electronics, 2012, vol. 99, pp. 1317-1322, doi:

10.1080/00207217.2012.669711.

[11] A. Alexandropoulos, E. Davrazos, F. Plessas, and M. Birbas, “A novel 1.8 V, 1066

Mbps, DDR2, DFI-compatible, memory interface”, In Proceedings of the 2010 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Lixouri, Greece, 5-7 July

2010, doi: 10.1109/ISVLSI.2010.49.

[12] A. Alexandropoulos, F. Plessas, M. Birbas, and S. A. Analogies, “A dynamic DFI-

compatible strobe qualification system for double data rate (DDR) physical

interfaces”, In Proceedings of the 2010 17th IEEE International Conference on

Electronics, Circuits and Systems (ICECS), Athens, Greece, 12-15 December 2010,

doi: 10.1109/ICECS.2010.5724507.

[13] G. Giannakas, F. Plessas, G. Nassopoulos, and G. Stamoulis, “A 2.45GHz power

harvesting circuit in 90nm CMOS”, In Proceedings of the 2010 17th IEEE

International Conference on Electronics, Circuits and Systems (ICECS), Athens,

Greece, 12-15 December 2010, doi: 10.1109/ICECS.2010.5724642.

[14] F. Plessas and N. Terzopoulos, “60 GHz Millimeter-Wave WLANs and WPANs:

Introduction, system design, and PHY layer challenges”, System-Level Design

Methodologies for Telecommunication, 2014, pp. 63-78.

[15] N. Terzopoulos, C. Laoudias, F. Plessas, G. Souliotis, S. Koutsomitsos, and M.

Birbas, “A 5-Gbps USB3.0 transmitter and receiver linear equalizer”, International

Journal of Circuit Theory and Applications, 2015, vol. 43, pp. 900–916, doi:

10.1002/cta.1982.

[16] S. Bhunia et al., “Protection against hardware trojan attacks: Towards a

comprehensive solution”, IEEE Design & Test, 2013, vol. 30, pp. 6–17, doi:

10.1109/MDT.2012.2196252.

[17] S. Mitra, H. S. P. Wong, and S. Wong, “The Trojan-proof chip”, IEEE Spectrum,

2015, vol. 52, pp. 46-51, doi: 10.1109/MSPEC.2015.7024511.

[18] A. L. Samuel, “Some studies in machine learning using the game of checkers”, IBM

Journal of Research and Development, 2000, vol. 3, pp. 210-229, doi:

93

10.1147/rd.441.0206.

[19] Y. LeCun, Y. Bengio, G. Hinton , “Deep learning”, Nature, 2015, vol. 521, pp. 436-

444, doi:10.1038/nature14539.

[20] G. K. Georgakilas, A. Grioni, K. G. Liakos, E. Chalupova, F. C. Plessas, and P.

Alexiou, “Multi-branch Convolutional Neural Network for Identification of Small

Non-coding RNA genomic loci”, Scientific Reports, 2020, vol. 10, pp. 9486, doi:

10.1038/s41598-020-66454-3.

[21] X. E. Pantazi, D. Moshou, and A. A. Tamouridou, “Automated leaf disease detection

in different crop species through image features analysis and One Class Classifiers”,

Computers and Electronics in Agriculture, 2019, vol. 156, pp. 96-104, doi:

10.1016/j.compag.2018.11.005.

[22] K. G. Liakos, G. K. Georgakilas, S. Moustakidis, N. Sklavos, and F. C. Plessas,

“Conventional and machine learning approaches as countermeasures against

hardware trojan attacks”, Microprocessors and Microsystems, 2020, vol. 79, pp.

103295, doi: 10.1016/j.micpro.2020.103295.

[23] K. G. Liakos, G. K. Georgakilas, S. Moustakidis, P. Karlsson, and F. C. Plessas,

“Machine Learning for Hardware Trojan Detection: A Review”, In Proceedings of

the 2019 Panhellenic Conference on Electronics & Telecommunications (PACET),

Volos, Greece, 8-9 November 2019, doi: 10.1109/PACET48583.2019.8956251.

[24] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware Trojans

classification for gate-level netlists based on machine learning”, In Proceedings of the

2016 IEEE 22nd International Symposium on On-Line Testing and Robust System

Design (IOLTS), Sant Feliu de Guixols, Spain, 4-6 July 2016, doi:

10.1109/IOLTS.2016.7604700.

[25] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction at gate-

level netlists and its application to hardware-Trojan detection using random forest

classifier”, In Proceedings of the 2017 IEEE International Symposium on Circuits

and Systems (ISCAS), Baltimore, MD, USA, 28-31 May 2017, doi:

10.1109/ISCAS.2017.8050827.

[26] T. Inoue, K. Hasegawa, M. Yanagisawa, and N. Togawa, “Designing hardware trojans

and their detection based on a SVM-based approach”, In Proceedings of the 2017

94

IEEE 12nd International Conference on ASIC (ASICON), Guiyang, China, 25-28

October 2017, doi: 10.1109/ASICON.2017.8252600.

[27] K. G. Liakos, G. K. Georgakilas, and F. C. Plessas, “Hardware Trojan Classification

at Gate-level Netlists based on Area and Power Machine Learning Analysis”, In

Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Tampa, FL, USA, 7-9 July 2021, doi: 10.1109/ISVLSI51109.2021.00081.

[28] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis and trust

benchmarks development”, In Proceedings of the 2013 IEEE 31st International

Conference on Computer Design (ICCD), Asheville, NC, USA, 6-9 October 2013,

doi: 10.1109/ICCD.2013.6657085.

[29] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,

“Benchmarking of Hardware Trojans and Maliciously Affected Circuits”, Journal of

Hardware and Systems Security, 2017, pp. 85-102, doi: 10.1007/s41635-017-0001-6.

[30] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for

improved quality, stability, and variation”, arxiv, 2018, arxiv:1710.10196.

[31] H. Zhang et al., “StackGAN: Text to Photo-Realistic Image Synthesis with Stacked

Generative Adversarial Networks”, In Proceedings of the 2017 IEEE International

Conference on Computer Vision (ICCV), Venice, Italy, 22-29 October 2017, doi:

10.1109/ICCV.2017.629.

[32] Y. Li, S. Liu, J. Yang, and M. H. Yang, “Generative face completion”, In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 5892-5900, doi: 10.1109/CVPR.2017.624.

[33] H. Zhang, V. Sindagi, and V. M. Patel, “Image De-Raining Using a Conditional

Generative Adversarial Network”, IEEE Transactions on Circuits and Systems for

Video Technology, 2020, vol. 30, pp. 3943-3956, doi:

10.1109/TCSVT.2019.2920407.

[34] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:

Threat analysis and countermeasures”, Proceedings of the IEEE, 2014, vol. 102, pp.

1229-1247, doi: 10.1109/JPROC.2014.2334493.

[35] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith, “Overcoming

an untrusted computing base: Detecting and removing malicious hardware

95

automatically”, In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(SSP), Oakland, CA, USA, 16-19 May 2010, doi: 10.1109/SP.2010.18.

[36] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and

implementing malicious hardware”, In Proceedings of the 1st Usenix Workshop on

Large-Scale Exploits and Emergent Threats (UWLSEET), San Francisco, CA, USA

15 April 2008.

[37] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and

detection”, IEEE Design and Test of Computers, 2010, vol. 27, pp. 10-25, doi:

10.1109/MDT.2010.7.

[38] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:

Identifying and classifying hardware trojans”, Computer, 2010, vol. 43, pp. 39-46,

doi: 10.1109/MC.2010.299.

[39] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity”, The bulletin of mathematical biophysics, 1943, vol. 5, pp. 115-133,doi:

10.1007/BF02478259.

[40] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain”, Psychological Review, 1958, vol. 65, pp. 386-408, doi:

10.1037/h0042519.

[41] S. K. Pal and S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and Classification”, IEEE

Transactions Neural Networks, 1992, vol. 3, pp. 683-697, doi: 10.1109/72.159058.

[42] H. J. Kelley, “Gradient Theory of Optimal Flight Paths”, American Rocket Society

Journal, 1960, vol. 30, doi: 10.2514/8.5282.

[43] M. Riedmiller and H. Braun, “Direct adaptive method for faster backpropagation

learning: The RPROP algorithm”, In Proceedings of the IEEE International

Confernce on neural Networks (ICNN), San Francisco, CA, USA, 28 March-1 April

1993, doi: 10.1109/icnn.1993.298623.

[44] R. Hecht-Nielsen, “Applications of counterpropagation networks”, Neural Networks,

1988, vol. 1. pp. 131-139, doi: 10.1016/0893-6080(88)90015-9.

[45] D. Broomhead, D. Lowe, “Multivariable Functional Interpolation and Adaptive

Networks”, Complex Systems, 1988, vol. 2, pp. 321–355.

96

[46] W. Melssen, R. Wehrens, and L. Buydens, “Supervised Kohonen networks for

classification problems”, Chemometrics and Intelligent Laboratory Systems, 2006,

vol. 83, pp. 99–113, doi: 10.1016/j.chemolab.2006.02.003.

[47] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities.”, Proceedings of the National Academy Sciences of the U. S.

A., 1982, vol. 79, pp. 2554-2558, doi: 10.1073/pnas.79.8.2554.

[48] D. F. Specht, “A General Regression Neural Network”, IEEE Transactions on Neural

Networks, 1991, vol. 2, pp. 568-576, doi: 10.1109/72.97934.

[49] C. Y. Liou, W. C. Cheng, J. W. Liou, and D. R. Liou, “Autoencoder for words”,

Neurocomputing, 2014, vol. 139, pp. 84-96, doi: 10.1016/j.neucom.2013.09.055.

[50] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE

Transactions on Systems, Man, and Cybernetics, 1993, vol. 23, pp. 665-685, doi:

10.1109/21.256541.

[51] G. Bin Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and

applications”, Neurocomputing, 2006, vol. 70, pp. 489-501, doi:

10.1016/j.neucom.2005.12.126.

[52] J. Cao, Z. Lin, and G. Bin Huang, “Self-adaptive evolutionary extreme learning

machine”, Neural Processing Letters, 2012, vol. 36, pp. 285-305, doi:

10.1007/s11063-012-9236-y.

[53] J. Pearl, “Probabilistic reasoning in intelligent systems: Networks of plausible

inference”, Morgan Kaufmann Publishers, 1988, doi: 10.5555/534975.

[54] R. E. Neapolitan, “Models for reasoning under uncertainty”, Applied Artificial

Intelligence, 2007, vol. 1, pp. 337-336, doi: 10.1080/08839518708927979.

[55] A. Ligeza, “Artificial Intelligence: A Modern Approach”, Neurocomputing, 1995,

vol. 9, pp. 215–218, doi: 10.1016/0925-2312(95)90020-9.

[56] K. Ali, A. Jamali, M. Abbas, K. Ali Memon, and A. Aleem Jamali, “Multinomial

Naive Bayes Classification Model for Sentiment Analysis”, IJCSNS International

Journal of Computer Science and Network Security, 2019, vol. 19, pp. 62-67.

[57] M. Ontivero-Ortega, A. Lage-Castellanos, G. Valente, R. Goebel, and M. Valdes-

Sosa, “Fast Gaussian Naïve Bayes for searchlight classification analysis”,

97

Neuroimage, 2017, vol. 163, pp. 471-479, doi: 10.1016/j.neuroimage.2017.09.001.

[58] R. C. Tryon, “Communality of a variable: Formulation by cluster analysis”,

Psychometrika, 1957, vol. 22, pp. 241-260, doi: 10.1007/BF02289125.

[59] S. P. Lloyd, “Least Squares Quantization in PCM”, IEEE Transactions on

Information Theory, 1982, vol. 28, pp. 129-137, doi: 10.1109/TIT.1982.1056489.

[60] S. C. Johnson, “Hierarchical clustering schemes”, Psychometrika, 1967, vol. 32, pp.

241-254, doi: 10.1007/BF02289588.

[61] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from

Incomplete Data Via the EM Algorithm”, Journal of the Royal Statistical Society.

Series B, 1977, vol. 39, pp. 1–22, doi: 10.1111/j.2517-6161.1977.tb01600.x.

[62] Y. Yuan, X. Chen, X. Chen, and J. Wang, “Segmentation Transformer: Object-

Contextual Representations for Semantic Segmentation”, Computer Vision – ECCV,

2020, pp. 173-190, doi:10.1007/978-3-030-58539-6_11.

[63] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution

discrepancy”, Advances in Neural Information Processing Systems 32 (NeurIPS

2019), 2019.

[64] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection”,

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020, pp. 10781-10790, doi: 10.1109/CVPR42600.2020.01079.

[65] W. A. Belson, “Matching and Prediction on the Principle of Biological

Classification”, Journal of the Royal Statistical Society. Series C (Applied Statistics),

1959, vol. 8, pp. 65-75, doi: 10.2307/2985543.

[66] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and

regression trees”, 2017, pp. 368, doi: 10.1201/9781315139470.

[67] G. V. Kass, “An Exploratory Technique for Investigating Large Quantities of

Categorical Data”, Journal of the Royal Statistical Society. Series C (Applied

Statistics), 1980, vol. 29, pp. 119-127, doi: 10.2307/2986296.

[68] A. M. Hormann, “Programs for machine learning Part I”, Information and Control,

1962, vol. 5, pp. 2347-367, doi: 10.1016/S0019-9958(62)90649-6.

[69] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, 2015, vol 521, pp.

98

436-444, doi: 10.1038/nature14539.

[70] N. Milosevic, “Introduction to Convolutional Neural Networks”, 2020, doi:

10.1007/978-1-4842-5648-0.

[71] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines”, In Proceedings of the

Twelth International Conference on Artificial Intelligence and Statistics (ICAIS),

2009, pp. 448-455.

[72] Y. Hua, J. Guo, and H. Zhao, “Deep Belief Networks and deep learning”, In

Proceedings of the 2015 International Conference on Intelligent Computing and

Internet of Things (ICICIT), 2015, doi: 10.1109/ICAIOT.2015.7111524.

[73] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, “Stacked

denoising autoencoders: Learning Useful Representations in a Deep Network with a

Local Denoising Criterion”, The Journal of Machine Learning Research, 2010, vol.

11, pp. 3371-3408.

[74] L. R. Medsker and L. C. Jain, “Recurrent Neural Networks Design and Applications”,

Journal of Chemical Information and Modeling, 2013.

[75] S. Hochreiter and J. Schmidhuber, “Long Short Term Memory. Neural Computation”,

Neural Computation, 1997, vol. 9, pp. 1735-1780, doi: 10.1162/neco.1997.9.8.1735.

[76] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space”,

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

1901, vol. 2, pp. 559-572, doi: 10.1080/14786440109462720.

[77] A. Leguina, “A primer on partial least squares structural equation modeling (PLS-

SEM)”, International Journal of Research & Method in Education, 2015, vol. 38, pp.

220-221, doi: 10.1080/1743727x.2015.1005806.

[78] P. Sarkar, “What is LDA: Linear Discriminant Analysis for Machine Learning”,

Knowledge Hut, 2019.

[79] R. E. Schapire, “Explaining adaboost”, Empirical Inference: Festschrift in Honor of

Vladimir N. Vapnik, 2013, pp. 37-52, doi: 10.1007/978-3-642-41136-6_5.

[80] L. Breiman, “Bagging predictors”, Machine Learning, 1996, vol. 24, pp 123-140, doi:

10.1007/bf00058655.

[81] R. E. Schapire, “A brief introduction to boosting”, In Proceedings of the 16th

99

International Joint Conference on Artificiasl Intelligent (IJCAI), 1999.

[82] J. H. Friedman, “Greedy function approximation: A gradient boosting machine”, The

Annals of Statistics, 2001, vol. 29, pp. 1189-1232, doi: 10.1214/aos/1013203451.

[83] L. Breiman, “Random forests”, Machine Learning, 2001, vol. 45, pp. 5-32, doi:

10.1023/A:1010933404324.

[84] I. Goodfellow et al., “Generative adversarial networks”, Communications of the

ACM, 2020, vol. 63, pp. 139-144, doi: 10.1145/3422622.

[85] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets”, arxiv, 2014,

vol. 1, pp. 1-7, arxiv: 1411.1784.

[86] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN”, arxiv, 2017, vol.1, pp

1-32, arxiv:1701.07875.

[87] S. Qin and T. Jiang, “Improved Wasserstein Conditional Generative Adversarial

Network Speech Enhancement”, EURASIP Journal on Wireless Communications and

Networking, 2018, doi: 10.1186/s13638-018-1196-0.

[88] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks”, In Proceedings of the Conference on Computer Vision and

Pattern Recognition (CVPR), Long Beach, CA, USA, 18-20 June 2019, doi:

10.1109/CVPR.2019.00453.

[89] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation

Using Cycle-Consistent Adversarial Networks”, In Proceedings of the International

Conference on Computer Vision (ICCV), Venice, Italy, 22-29 October 2017, pp.

2223-2232, doi: 10.1109/ICCV.2017.244.

[90] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination:

Consistency Properties”, International Statistical Review / Revue Internationale de

Statistique, 1989, vol. 57, p. 238, doi: 10.2307/1403797.

[91] T. Kohonen, “Statistical Pattern Recognition Revisited”, Advanced Neural

Computers, 1990, pp. 137-144, doi: 10.1016/B978-0-444-88400-8.50020-0.

[92] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted Learning”, Artificial

Intelligence Review, 1997, vol. 11, pp. 11-73, doi: 10.1007/978-94-017-2053-3_2.

[93] C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning, 1995, vol.

100

20, pp. 273-297, doi: 10.1023/A:1022627411411.

[94] T. Kohonen, “The self-organizing map,” Neurocomputing, 1998, vol. 21, pp. 1–6, doi:

10.1016/S0925-2312(98)00030-7.

[95] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”, In

Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (Naacl-

Hlt), Minneapolis, MI, USA, June 2019, doi: 10.18653/v1/N19-1423.

[96] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet:

Generalized autoregressive pretraining for language understanding”, Advances in

Neural Information Processing Systems 32 (NeurIPS 2019), 2019, doi:

10.48550/arXiv.1906.08237.

[97] K. Park, R. Rothfeder, S. Petheram, F. Buaku, R. Ewing, and W. H. Greene, “Linear

regression”, Basic Quantitative Research Methods for Urban Planners, 2020.

[98] D. R. Cox, “The Regression Analysis of Binary Sequences”, Journal of the Royal

Statistical Society. Series B, 1959, vol. 21, pp. 238–238, doi: 10.1111/j.2517-

6161.1959.tb00334.x.

[99] G. Hutcheson, “Ordinary Least-Squares Regression”, The SAGE Dictionary of

Quantitative Management Research, 2011, pp. 224-228.

[100] J. R. Quinlan, “Learning with continuous classes”, In Proceedings of the Australian

Joint Conference on Artificial Intelligence, Hobart, Australia, 16-18 November 1992,

pp. 343-348.

[101] W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots”,

Journal of the American Statistical Association, 1979, vol. 74, pp. 829-836, doi:

10.1080/01621459.1979.10481038.

[102] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for

Nonorthogonal Problems”, Technometrics, 1970, vol. 42, pp. 80-86, doi:

10.1080/00401706.1970.10488634.

[103] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso”, Journal of the

Royal Statistical Society. Series B, 1996, vol. 58, pp. 267-288, doi: 10.1111/j.2517-

6161.1996.tb02080.x.

101

[104] B. Efron et al., “Least angle regression”, Annuals of Statistics, 2004, vol. 32, pp. 407-

499, doi: 10.1214/009053604000000067.

[105] W. Han et al., “ContextNet: Improving convolutional neural networks for automatic

speech recognition with global context”, In Proceedings of the Conference of the

International Speech communication Association (INTERSPEECH), Shanghai,

China, 25-29 October 2020, doi: 10.21437/Interspeech.2020-2059.

[106] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light Gated Recurrent Units

for Speech Recognition”, IEEE Transactions on Emerging Topics in Computational

Intelligence, 2018, vol. 1, doi: 10.1109/TETCI.2017.2762739.

[107] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,

In Proceedings of the IEEE Conference on Computer Vision and Pattern (CVPR), Las

Vegas, NE, USA, 26 June - 1 July 2016, doi: 10.1109/CVPR.2016.90.

[108] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan detection

using IC fingerprinting”, In Proceedings of the IEEE Symposium on Security and

Privacy (SP '07), Berkeley, CA, USA, 20-23 May 2007, doi: 10.1109/SP.2007.36.

[109] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “MERO: A

statistical approach for hardware Trojan detection”, Lecture Notes in Compuer

Science, 2009, vol. 5747 LNCS, pp. 396–410, doi: 10.1007/978-3-642-04138-9_28.

[110] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique for Improving

Hardware Trojan Detection and Reducing Trojan Activation Time”, IEEE

Transactions on Very Large Scale Integration Systems, vol. 20, pp. 112–125, Jan.

2012, doi: 10.1109/TVLSI.2010.2093547.

[111] C. Bao, D. Forte, and A. Srivastava, “On application of one-class SVM to reverse

engineering-based hardware Trojan detection”, In Proceedings of the 15th

International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 3-5

March 2014, doi: 10.1109/ISQED.2014.6783305.

[112] X. T. Ngo, J. L. Danger, S. Guilley, Z. Najm, and O. Emery, “Hardware property

checker for run-time Hardware Trojan detection”, In Proceedings of the 2015

European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway,

24-26 August 2015, doi: 10.1109/ECCTD.2015.7300085.

[113] K. G. Liakos, G. K. Georgakilas, F. C. Plessas, and P. Kitsos, “GAINESIS:

102

Generative Artificial Intelligence NEtlists SynthesIS”, Electronics, 2022, vol. 11, pp.

245, doi: 10.3390/electronics11020245.

[114] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detecting trojans through

leakage current analysis using multiple supply pad IDDQs”, IEEE Transactions on.

Information Forensics Security, 2010, vol. 5, pp. 893-904, doi:

10.1109/TIFS.2010.2061228.

[115] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of power signal

methods for detecting hardware trojans under real process and environmental

conditions”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

2010, vol. 18, pp. 1735-1744, doi: 10.1109/TVLSI.2009.2029117.

[116] F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal submodular

integrated circuits trojan detection”, IEEE Transactions on Information Forensics and

Security, 2011, vol. 6, pp. 162-174, doi: 10.1109/TIFS.2010.2096811.

[117] S. Narasimhan et al., “Hardware trojan detection by multiple-parameter side-channel

analysis”, IEEE Transactions on Computers, 2013, vol. 62, pp. 2183-2195, doi:

10.1109/TC.2012.200.

[118] C. Lamech, R. M. Rad, M. Tehranipoor, and J. Plusquellic, “An experimental analysis

of power and delay signal-to-noise requirements for detecting trojans and methods for

achieving the required detection sensitivities”, IEEE Transactions on Information

Forensics and Security, 2011, vol. 6, pp. 1170-1179, doi:

10.1109/TIFS.2011.2136339.

[119] K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping technique for detecting

hardware trojans impacting circuits delay”, IEEE Design & Test, 2013, vol. 30, pp.

26–34, doi: 10.1109/MDAT.2013.2249555.

[120] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification of stealthy

malicious logic using boolean functional analysis”, In Proceedings of the 2013 ACM

SIGSAC Confernce on Computer & Communications Security, Berlin, Germany, 4

November 2013, pp. 697-708, doi: 10.1145/2508859.2516654.

[121] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification for hardware

trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2015, vol. 34, pp. 1148-1161, doi: 10.1109/TCAD.2015.2422836.

103

[122] C. Bao, Y. Xie, Y. Liu, and A. Srivastava, “On Reverse Engineering-Based Hardware

Trojan Detection”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2016, vol. 35, pp. 49-57, doi: 10.1109/TCAD.2015.2488495.

[123] D. Jap, W. He, and S. Bhasin, “Supervised and unsupervised machine learning for

side-channel based Trojan detection”, In Proceedings of the 27th International

Conference on Application-Specific Systems, Architectures and Processors (ASAP),

London, UK, 06-08 July 2016, doi: 10.1109/ASAP.2016.7760768.

[124] M. Xue, J. Wang, and A. Hux, “An enhanced classification-based golden chips-free

hardware Trojan detection technique”, In Proceedings of the 2016 IEEE Asian

Hardware-Oriented Security and Trust (AsianHOST), Yilan, Taiwan, 19-20

December 2016, doi: 10.1109/AsianHOST.2016.7835553.

[125] S. Wang, X. Dong, K. Sun, Q. Cui, D. Li, and C. He, “Hardware Trojan detection

based on ELM neural network”, In Proceedings of the First IEEE International

Conference on Computer Communication and the Internet (ICCCI), Wuhan, China,

13-15 October 2016, doi: 10.1109/CCI.2016.7778952.

[126] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection technique for

hardware Trojans using machine learning in frequency domain”, In Proceedings of

the 4th IEEE Global Conference on Consumer Electronics (GCCE), Osaka, Japan,

27-30 October 2015, doi: 10.1109/GCCE.2015.7398569.

[127] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of Hardware

Trojan Design and Detection in Wireless Cryptographic ICs”, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2017, vol. 25, pp. 1506-1519, doi:

10.1109/TVLSI.2016.2633348.

[128] F. Khalid, S. R. Hasan, O. Hasan, and F. Awwad, “Runtime hardware Trojan monitors

through modeling burst mode communication using formal verification”, Integration,

2018, vol. 61, pp. 62–76, doi: 10.1016/j.vlsi.2017.11.003.

[129] C. Bao, D. Forte, and A. Srivastava, “Temperature Tracking: Toward Robust Run-

Time Detection of Hardware Trojans”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2015, vol. 34, no. 10, pp. 1577–1585, doi:

10.1109/TCAD.2015.2424929.

[130] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-Lock: A novel

104

LUT-based logic obfuscation for FPGA-Bitstream and ASIC-hardware protection”,

In Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Hong Kong, China, 09 August 2018, doi: 10.1109/ISVLSI.2018.00080.

[131] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-Lock: Hard

distributions of SAT instances for obfuscating circuits using fully configurable logic

and routing blocks”, In Proceedings of the 56th ACM/IEEE Design Automation

Conference (DAC), Las Vegas, USA, 2-6 June 2019, doi: 10.1145/3316781.3317831.

[132] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “FPGA-based protection

scheme against hardware trojan horse insertion using dummy logic”, IEEE Embeded

Systems Letters, 2015, vol. 7, pp. 46–50, doi: 10.1109/LES.2015.2406791.

[133] A. Nejat, S. M. H. Shekarian, and M. Saheb Zamani, “A study on the efficiency of

hardware Trojan detection based on path-delay fingerprinting”, Microprocessors and

Microsystems, 2014, vol. 38, pp. 246–252, doi: 10.1016/j.micpro.2014.01.003.

[134] S. M. H. Shekarian and M. Saheb Zamani, “Improving hardware Trojan detection by

retiming”, Microprocessors and Microsystems, 2015, vol. 39, pp. 145-156, doi:

10.1016/j.micpro.2015.02.002.

[135] M. Pilgrim, S. Willison, “Dive Into Python”, Springer, 2009, vol. 2.

[136] M. Abadi et al., “TensorFlow: A system for large-scale machine learning”,

Proceedings of the 12th USENIX conference on Operating Systems Design and

Implementation, Savannah, USA, 2-4 November 2016, doi:

10.5555/3026877.3026899.

[137] F. Chollet, “Keras”, Journal of Chemical Information and Modeling, 2015.

[138] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” The Journal of

Machine Learning Research, 2011, vol. 12, pp. 2825–2830.

[139] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Francisco California, USA, 13-17 August 2016, doi:

10.1145/2939672.2939785.

[140] T. Kluyver et al., “Jupyter Notebooks—a publishing format for reproducible

computational workflows”, In 20th International Conference on Electronic

Publishing (ELPUB), Göttingen, Germany, 7-9 June 2016, pp. 87-90, doi:

105

10.3233/978-1-61499-649-1-87.

[141] C. H. M. Oliveira, M. T. Moreira, R. A. Guazzelli, and N. L. V. Calazans, “ASCEnD-

FreePDK45: An open source standard cell library for asynchronous design”, In

Proceedings of the 2016 IEEE/International Conference on Electronics, Circuits and

Systems (ICECS), Monte Carlo, Monaco, 06 February 2016, doi:

10.1109/ICECS.2016.7841286.

[142] C. W. Royer, M. O’Neill, and S. J. Wright, “A Newton-CG algorithm with complexity

guarantees for smooth unconstrained optimization”, Mathematical Programming,

2020, vol. 180, pp. 451-488, doi: 10.1007/s10107-019-01362-7.

[143] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale

optimization”, Mathematical Programming, 1989, vol.45, pp. 503-528, doi:

10.1007/BF01589116.

[144] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, “LIBLINEAR: A

library for large linear classification”, The Journal of Machine Learning Research,

2008, vol. 9, pp. 1871-1874, doi: 10.5555/1390681.1442794.

[145] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic

average gradient”, arxiv, 2017, pp. 1-52, arxiv:1309.2388.

[146] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient

method with support for non-strongly convex composite objectives”, arxiv, 2014, pp.

1-15, arxiv:1407.0202.

[147] J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector Machine

Classifiers”, Neural Processing Letters, 1999, vol. 9, pp. 293–300, doi:

10.1023/A:1018628609742.

[148] C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector machines”, ACM

Transactions on Intelligent Systems and Technology, 2011, vol. 2, pp.1-27, doi:

10.1145/1961189.1961199.

[149] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression”, Statistics

and Computing, 2004, vol. 14, pp. 199-222, doi:

10.1023/B:STCO.0000035301.49549.88.

[150] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle,

“Basic Methods of Least Squares Support Vector Machines,” Least Squares Support

106

Vector Machines, 2002, pp. 71–116, doi.org/10.1142/9789812776655_0003.

[151] R. Galvão, M. Araújo, W. Fragoso, E. Silva, G. José, S. Soares, H. Paiva, “A variable

elimination method to improve the parsimony of MLR models using the successive

projections algorithm”, Chemometrics and Intelligent Laboratory Systems, 2008, vol.

92, pp. 83-91, doi: 10.1016/j.chemolab.2007.12.004.

[152] S. Ruder, “An overview of gradient descent optimization algorithms”, arxiv, 2017,

pp. 1-14 , arxiv: 1609.04747.

[153] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization”, arxiv,

2015, pp. 1-15, arxiv:1412.6980.

[154] T. Kurbiel and S. Khaleghian, “Training of Deep Neural Networks based on Distance

Measures using RMSProp”, arxiv, 2017, pp. 1–6, arxiv:1708.01911.

[155] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU)”, arxiv, 2018, pp.

2–8, arxiv:1803.08375.

[156] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed

of backpropagation learning”, In From Natural to Artificial Neural Computation;

Springer, Berlin-Heidelberg, Germany, 1995, doi:10.1007/3-540-59497-3_175.

[157] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:

Comparison of trends in Practice and Research for Deep Learning”, arxiv, 2018, pp.

1–20, arxiv:1811.03378.

[158] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, “Exciting FPGA

cryptographic Trojans using combinatorial testing”, In Proceedings of the 2015 IEEE

26th International Symposium on Software Reliability Engineering (ISSRE),

Gaithersbury, MD, USA, 2–5 November 2015; doi:10.1109/ISSRE.2015.7381800.

[159] L. Pyrgas and P. Kitsos, “A hybrid FPGA trojan detection technique based-on

combinatorial testing and on-chip sensing”, In Proceedings of the 2018 Springer 14th

International Symposium on Applied Reconfigurable Computing (ARC), Santorini,

Greece, 2-4 May 2018, doi: 10.1007/978-3-319-78890-6_24.

[160] A. P. Fournaris, L. Pyrgas, and P. Kitsos, “An efficient multi-parameter approach for

FPGA hardware Trojan detection”, Microprocess and Microsystems, 2019, vol 71,

doi: 10.1016/j.micpro.2019.102863.

	Περίληψη
	Abstract
	Πίνακας περιεχομένων
	Κατάλογος εικόνων
	Κατάλογος πινάκων
	Συντομογραφίες
	Chapter 1 Introduction
	1.1 Motivation and Structure of the Dissertation

	Chapter 2 Background
	2.1 Integrated Circuits Supply Chain
	2.2 Hardware Trojan Structure
	2.3 Hardware Trojan Models
	2.4 Hardware Trojan Attacks
	2.5 Hardware Trojan Taxonomy
	2.6 Challenges Against Hardware Trojan

	Chapter 3 An Overview on Artificial Intelligence
	3.1 Introduction
	3.2 Artificial Intelligence Term
	3.3 Machine Learning Term
	3.4 Deep Learning Term
	3.5 Tasks of Learning
	3.5.1 Supervised Learning
	3.5.2 Unsupervised Learning
	3.5.3 Semi-supervised Learning

	3.6 Types of Learning Models
	3.6.1 Artificial Neural Networks Models
	3.6.2 Bayesian Models
	3.6.3 Clustering Models
	3.6.4 Computer Vision Models
	3.6.5 Decision Trees Models
	3.6.6 Deep Neural Networks Models
	3.6.7 Dimensionality Reduction Models
	3.6.8 Ensemble Learning Models
	3.6.9 Generative Learning Models
	3.6.10 Instance Based Models
	3.6.11 Natural Language Processing Models
	3.6.12 Regression Models
	3.6.13 Regularization Models
	3.6.14 Speech Recognition Models

	3.7 AI History Timeline

	Chapter 4 Countermeasures Against Hardware Trojans
	4.1 Introduction
	4.2 Historical Throwback
	4.3 Categorization of Studies
	4.4 Distribution of the most Contributing Journal Studies
	4.5 Studies Trend
	4.6 SCA-based Approaches
	4.6.1 SCA-based Power Analysis Approaches
	4.6.2 SCA-based Time Analysis Approaches
	4.6.3 SCA-based Approaches Conclusions

	4.7 ML and Simulation based Approaches
	4.7.1 Logic Testing Simulation Approaches
	4.7.2 ML-based Approaches
	4.7.3 ML and Simulation based Approaches Conclusions

	4.8 Auxiliary Approaches
	4.8.1 Runtime Monitoring Approaches
	4.8.2 Prevention & Facilitation Approaches
	4.8.3 Auxiliary Approaches Conclusions

	4.9 Countermeasures Against Hardware Trojans Conclusions

	Chapter 5 GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS
	5.1 Introduction
	5.2 Scheme of GAINESIS Methodology
	5.3 Data set
	5.3.1 Initial Data Set Development

	5.4 Machine Learning Classifiers Development
	5.4.1 GB-based Classifier
	5.4.2 KNN-based Classifier
	5.4.3 LR-based Classifier
	5.4.4 MLP-based Classifier
	5.4.5 RF-based Classifier
	5.4.6 SVM-based Classifier
	5.4.7 XGB-based Classifier

	5.5 Machine Learning Classifiers Evaluation
	5.6 GAINESIS Development
	5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms

	5.7 GAINESIS Evaluation
	5.8 Synthesis of New Generated Data Sets
	5.9 New Generated GB-based Classifiers Development
	5.10 Mixed GB-based Classifiers Development

	Chapter 6 Results
	6.1 New Generated Data Sets Results
	6.2 Mixed Data Sets Results
	6.3 All Data Sets Results
	6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-880 Classifier
	6.5 Comparison to Existing Methods

	Chapter 7 Conclusions and Future Work
	References

