\ MANEIIETHMIO OEZZAAIAY
/A " MOAYTEXNIKH IXOAH

j TMHMA HAEKTPOAOTI' QN MHXANIKQN KAI MHXANIKQN
YIHOAOI'TETQN

Evpuég YroroyioTiké X0otnpo Yo Tv Aviyvevon

Elottopdtov kow Avopoii@v oty Hiektporoyia

Awatpifn 1 omoio vOPANONKE Yl TN UEPIKN EKTANPOCT TV VITOYPEDTEMV

amdKTNONG TOL ABAKTOPIKOD AUTADUOTOC

Kovotavtivog Atdkog

Mduog 2022

/,q.,‘\ UNIVERSITY OF THESSALY
@‘:\ SCHOOL OF ENGINEERING

/ DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering

A dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Konstantinos Liakos

May 2022

i1

/w"\ ITANEHIXTHMIO OEXXAAIAX

% © IOAYTEXNIKH IXOAH

AN 9

K}\J) J TMHMA HAEKTPOAOI'QN MHXANIKQN KAI MHXANIKQN
o YINOAOTIETON

Ev@uéc YroroyioTiko Xvotnua Yo Tnv Aviyvevon

Elottopdtov kow Avopoii@v otnv Hiektporoyia

Adoxtopikn Aotpin

Kovotavtivog Aldkog

YopPovievtiki Emrponiy
IMiéocag PdOTIOC, Avarinpotg Kabnynmg, [Taveriompio Osccorioc. (EmPrénmv)
Kitoog llapaockevag, Avaninpotg Kadnyntg, [Tavemotpio [elorovviicov
Leporati Francesco, Avaninpwotg Kabnyntg, [ovemomuo afia

Entopeic eEeTaoTikn emrponn
MAéocag PaOTIOC, Avaninpotic Kadnynmcg, [lavemotuio Osscariog. (EmPrénmv)
Kiroog I[apackevds, Avarinpotg Kadnyntg, [avemotiuo Ilehorovvicov
Leporati Francesco, Avaninpotg Kadnyntg, [avemompo [aPio
Yrapoving I'edpyrog, Kadnynmce, [avemommuo Oescariog
Xotpiov Xpnotog, Avaninpotrg Kadnyntg, Havemomuo Oscoaliog
YkAdfog Nikorag, Avarinpwtig Kanyntig, [Havemomuo IMoatpodv
HMotomavog I'epdorpog, Avaninpmtg Kabnynmge, [aveniompio Osccoriog

Mduog 2022

YIEYOYNH AHAQZH ITEPI AKAAHMAIKHEZ AEONTOAOTTAX KAI
IINEYMATIKOQN AIKAIQMATQN

Me mAnpn entyvmon TOV GUVETEIDOV TOV VOUOL TEPT TVEVHOTIKOV OIKOUMOUATOV, dNADVE
pNTa O6TL N TapoVoa S1OAKTOPIKN STPIPN, KAOMG Kol T0 NAEKTPOVIKA apyeio Kot Tnyoiot
KOOKEG TOL avartuyOnKav 1 TpororomOnKav ota TAaicio avT)g TG OaTpIPr|g, AmoTEAOVV
OTOKAEIGTIKA TPOIOV TPOCMOTIKNG HOL EPYNUCING, 0V TPOGPAAAOLY OTOLUGONTOTE LOPPNG
SIKOMUOTO SLOVONTIKNG 010K TNGI0G, TPOCOTIKOTNTOS KO TPOCHOTIKAOV dEGOUEVOV TPIT®V,
dgv meplEyovv Epya/elcpopés Tpitov ywo To. omofo. amotteiton Ao TV
ONUIOVPYOV/IKALOVY®V KO OV €IVl TPOTOV LEPIKNG T} OAIKNG OVTLYPAPNC, Ol TNYES OE TTOV
ypnoworomdnkav mepropilovian otig PPAOYPAPIKES avapopEg Kot LOVOV Kol TANPOVV
TOVG KOVOVEG NG eMOTNUOVIKNG Tapdbeons. Ta onueio 0mov €x® YPNOLOTOMGEL 10€EG,
kelpevo, apyeia /Kot Ty GAL®Y GLYYPUPEDY OVOPEPOVTOAL EVIIUKPITA GTO KEIUEVO Ue
TNV KOTAAANAY TOPOTOUT KOL 1| OXETIKY] avagopd TeEPAapUPAVETAL GTO TUNUO TOV
BpA0YpaPIKOV ovapopdV e TANPN TEPLYPAPN. ANADOV® €TioNg OTL TO. AMOTEAECLOTO TG
gpyaciag dev Egovv ypnoipomon el yio v ardKTnon GALoL Ttruyiov. Avolopave TAnpwd,
ATOMKO KOl TPOCMMIKE, OAEC TIC VOUIKES KOl OLOIKNTIKES GULVEMEEG TTOV JVUVOTOL VL
TPOKOWYOLV GTNV TEPINTOOT KATd TV omoia amoderydetl, draypovikd, 6TL N epyacio vt 1

TUNHO TNG OEV LOV avKEL S10TL £fvat TPOiIOV AOYOKAOTNG.

O Anrhov

Kovotavtivog Aldkog

vil

o, [UNIVERSITY OF THESSALY
§ ﬂ “) | SCHOOL OF ENGINEERING

s /" | DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering

PH.D. Dissertation

Konstantinos Liakos

Advisory Committee
Plessas Fotios, Associate Professor, University of Thessaly
Kitsos Paris, Associate Professor, University of Peloponnese

Leporati Francesco, Associate Professor, University of Pavia

Examination Committee
Plessas Fotios, Associate Professor, University of Thessaly
Kitsos Paris, Associate Professor, University of Peloponnese
Leporati Francesco, Associate Professor, University of Pavia
Stamoulis George, Professor, University of Thessaly
Sotiriou Christos, Associate Professor, University of Thessaly
Sklavos Nikolas, Associate Professor, University of Patra

Potamianos Gerasimos, Associate Professor, University of Thessaly

May 2022

X

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY
RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this Ph.D.
dissertation, as well as the electronic files and source codes developed or modified in the
course of this dissertation, are solely the product of my personal work and do not infringe
any rights of intellectual property, personality and personal data of third parties, do not
contain work / contributions of third parties for which the permission of the authors /
beneficiaries is required and are not a product of partial or complete plagiarism, while the
sources used are limited to the bibliographic references only and meet the rules of scientific
citing. The points where I have used ideas, text, files and / or sources of other authors are
clearly mentioned in the text with the appropriate citation and the relevant complete
reference is included in the bibliographic references section. I also declare that the results of
the work have not been used to obtain another degree. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this dissertation or part of it does not belong to me because

it is a product of plagiarism.

The Declarant

Konstantinos Liakos

X1

Evyapiotieg

Me v ohokApmo™ NG TapoVGaS OOAKTOPIKNG dTpiPne, Ba Nbela va gvuyoplotiowm
Oepud tor dtopa mOL CULVEPBOAMY LE TN GUVEIGQOPE TOLG, YOl TNV OAOKANP®GN TNG.
Yuykekpyéva, BEA® vo evyaploTIo® TOV ayamnuévo pov erontedmv kabnynt [MAéooa
doto ko Toug kadnyntég Kitoo IMopaockevd wor Leporati Francesco, kabad¢ kot tov
ayamnuévo pov @iko doxtwp 'ewpyoaxira 'edpyro, yio v Pondeia ko v vrootpién
Toug kaB’ OAN TV Odpkeln Tov OakTopkoL pov. Téhoc, Ba NBela va gvyoploTiow®
oAOYVYa TV ovlvyo pov Maipn, TOVg TOALOYATNUEVOVS LOV YOVEIG, TOV TOTEPO OV
I'edpylo kot v untépa pov Mapia, Ta adépera pov Eiprivn ko NikdAa Kot ToV aviyid fov
Xpnoto, ot omoiot givo n xapd TG LONG oL Kot 1 dvvaun Hov OAa Ta xpovia Kot deiyvouv
TNV QUEPLOTI CLUTAPAGTOCT TOVS MG TPOGS TO TPOGMTO LLOV, TOGO GTO KOUUATL TMV GTTOVODV

660 Kot TG Cong kot Bpiokoviot Tavta SimAa pov.

xiil

Adoxktoptkn Alatpipn

Ev@uéc YroroyioTiko Xvotnua Yo Tnv Aviyvevon
Elottopndrtov kor Avopoii@v otnv Hiektporoyia

Kovoetavtivog Aldkog

Iepiinyn

Yng pépeg pag vmhpyet avaykn yoo akoun mo egglypéva KukAopata. Ou etaipeieg
OYEOOGILOV, TPOKEYEVOD VO LEUDGOVY TO AEITOVPYIKO KOGTOG KOl VO SIELKOAVVOLV TN
polikn Topoymyr] OAOKANPOUEVOV KUKA®UATOV, 0voOETOLV TNV KOTOGKELY TOVS GF
tpitovg. H dadikacio avt avgdvel tov kivovvo embBécemv €1GPOANG HE TN HOpPON 1OV
VAKOV, YVOOTOV Kol g uwv dovpeiov inmov cvokevdv. Ot 1ol avtol amotehodv éva
onuavtikd TpdPANUa Tov £xetl T duvatodtnto vo eEedyBel og emonpia ta emdpeva ypovia,

OTOTEADVTOS CTUOVTIKY] OTEM TOGO amd TEXVOAOYIKT OGO Kol 0O KOWVMVIKN Goyn.

H mAeiovotta TV HeEAeT®V apopd TV avATTLEN OVTILETPOV KATA TOV 1OV d0LPEiov {mtmov
OGLOKELMV, YO KUKADOUOTO OLOTOWING TPOYPOUHOTICOHEVOY TOAGV Tediov Kot
GLYKEKPLUEVA Y10 TO GTASI0 HETA TO TLpiTo. Emiong, vdpyovv mepropiopéveg mAnpopopieg
KOl ONUOGIEVUEVES HEAETEC Y10 TOL OAOKANPOUEVO KUKADUOTO EOKNG EPOPUOYNG Kot
GLYKEKPIUEVA Y10 TO GTAO0 TPV 0md T0 TLPiTo. To OAOKANPOUEVE KUKADUATO EO01KNG
EPAPLOYNG ATOTEAOVV TPOKANGOT AOY® TG TOKIMOG TOV PAGEDV GYESIAGLOD TOV £XOVV
Kol 1010¢ 6T0 6TAd10 TPV 0md TO TLPITIO, KABMG KOl AOY® TNG OVAYKNG EMOYYEALUATIKAOV

epyareEimV Y10 TO oYESOGHO KAOE Phonc.

Xe avut) ™ OTpiPr] HEAETNCOUE OLAPOPES PACELS Yo TN SLOIKOGI0 GYESOGHOD OE
OAOKANPOUEVE KUKAMDUOTO EWOIKNG EPOPUOYNG KOl OOMICTOCAUE OTL VIAPYEL YEVIKY
EMhenym og dedopéva amd dNUOcLa-eAeLBEPO KUKADOUOTO KAODS OTL VITAPYEL EMIONG HEYOAO
TpOPANUO avicoppomiog HETOEL UN HOAVCUEVAOV KOl HOAVGUEVOV KUKA®UATOV.
XPNOUYLOTOMGALE KO GYEOACAUE OAOL TO TEPLOPIGUEVO, KUKADLLOTO OVOPOPAS, Y10 TN (PO
emmEdOV TOANG TOV OAOKANPOUEVOV KUKAOUATOV €WIKNG €POPUOYNG, HE €val
EMOyYEAUATIKO epyoAeio kol e€yOlE YOPOKTNPIOTIKA avaivong epPadov, 1oxbog kot
xPOVOL. AvarToEape ToL KA Hog LOVTEAQ TASvOUN oG UNYOVIKNG Labnong, pe faon avtd

TO. TEPLOPIGUEVO OEOOUEVA KOl TOPOTNPNOAUE OTL 1 EAAEWYN OElyUdT®mV 0dnyel otV

XV

avATTLEN AVIGOPPOTT®V KOl LT IOYVPDOV HEAETMOV TaEVOUNoNG oL PacilovTol 6g Pnyavikn
uéOnon, yio v aVIHETOTION TV 1OV 00VPEiov immov cuokev®v. EmAvcape to Tpdfinua
TOV TEPLOPICUEVAOV OEGOUEVOV LE TNV AVATTUEN TOV SIKOV HaG LoVIEA®Y PBabidg nddnong
- YEVETIKOV OVTIOETIKOV SIKTV®V, TO, omoia NTav o€ B€om va cuvBécovy véa mapaydueva
dgdopéva pe Paomn to Tpoaypotikd meploptopéva. dedopéva pag. Ta yevetikd avtifetikd
diktva givor véor alyopifuol Pabidc pnddnong mov yPNCYOTOOVVTOL GTOV TOUEN TNG
VTOAOYIOTIKNG Opao™g, Yio T dnuovpyio teyvntov ekoévov. ‘Htav n mpdtn gopd mov
ypMNooTOmONKay yeveTiKd avtifetikd diktva o ovtd To gpguvNTiKd Tedio. 'Etot, pe faon
ta véo mopayopeva dedopéva pog ovartvéoape Evav woyvupo talvounty Paciopévo oe
Unaviky, pdbnong, o¢ avtileTpo Katd Tov 1V d0Vpeiov IMmov GLGKELOV Y10, TV PACT
EMMESOV TLAMV KOl TOV GLYKPIVAUE [E LITAPYoVoeS LeBOdOLVG Yo ot TV @don. TEroc,
LETATPEYOLE TO TAPOYOYIKO HaG HOVIEAO og €va ghevbepo epyaieio mpokeEWEVOL va

ypNoponomel g AHGN Yo TV OVIIULETOTION TOV TEPLOPIGUEVOD APtOLOD dES0UEVOV.

AgEgrc-Khe1014.:
Acpdreln, VAIKOD, OAOKANP®UEVO KUKAMDUATO, OAOKANPOUEVE KUKADUOTO EOIKNG EQOPHOYNG, 101
dovpeiov MOV GLGKELMV, OVTILETPA, TEXVNTH VONLOGVVT, Unyovikn uddnon, pdbnon oe Pabog,

TOPAYOYIKN LAONON, TOPAYOYIKAE OVTIQATIKA dIKTVO, TPO TLPLTIOV 6TAS10, PACT) EMTEOOV TOANG

xvi

Ph.D. Dissertation

Intelligent Computational System for Defects and Anomalies

Detection in Electrical Engineering

Konstantinos Liakos

Abstract

In our days there is a need for even more and more sophisticated circuits. The design
companies to reduce the operating costs and facilitate mass production of integrated circuits,
outsource their fabrication to third-party foundries. This process increases the risk of
intrusion attacks in the form of hardware viruses, also known as hardware trojans (HTs)
viruses. HTs viruses are a critical problem that has the potential to become an outbreak in

the coming years, presenting a significant threat both technologically and socially.

The majority of the studies are concerned with the development of countermeasures against
HTs for Field-Programmable Gate Array (FPGA) circuits at the post-silicon stage. Also,
there is limited information and published studies for the Application-Specific Integrated
Circuits (ASICs) and specifically for the pre-silicon stage. ASICs are challenging due to the
variety of design phases especially on the pre-silicon stage and for the need for professional

tools for the design of each phase.

In this thesis, we studied several phases for the design process on ASICs and we found that
there is a general lack of free benchmark circuits and also there is a high imbalance problem
between uninfected and infected benchmark circuits. We used and designed all the limited
benchmark circuits for the Gate-Level Netlist (GLN) phase of ASICs with a professional
tool and extracted area, power and time analysis features. We developed our Machine
Learning (ML) classification models based on this limited data and we observed that the lack
of samples leads to the development of imbalanced and no robust ML-based classification
approaches against HTs viruses. We solved the problem of the limited data with the
development of our Deep Learning (DL) - Generative Adversarial Networks (GANs) models
which were able to synthesize new generated data based on our real limited data. GANs are
novel DL algorithms that are used in the computer vision field for generating artificial

images and it was the first time that GANs were used in this research field. Based on our

Xvil

new generated data we developed a robust ML-based classifier as a countermeasure against
HTs at the GLN phase and compared it with existing methods. Finally, we turned our
generative model into a free tool to be used as a solution for dealing with the limited number

of data.

Keywords:
Hardware security, integrated circuits, application-specific integrated circuits, hardware trojan
viruses, countermeasures, artificial intelligence, machine learning, deep learning, generative

learning, generative adversarial networks, pre-silicon stage, gate-level netlist phase

Xviii

Ilivakog wepreyopévov

TIEPIZTUI auevennneninnnencnnninsnnncssnnncssnsncssssisssssssssssssssssssssssssssssesssssesssssesssssesssssesssssssssssessssssssnss xv
ABSIVACE cunnnennevnnenneecnvensnencneissecsssesssisssesssssssessssssssessns XVii
TTIVAKOG TIEPIEYOUEVDY euuunueeeeeverissuriessaricsssrisssssssssssssssssessssssssssosssssossssssssssssssssssssssssssssssssns Xix
KOTALOPOG EIKOVIV..nnaaeeesnverosraensssanisssanissssrssssassasssssasssssasssss xxiii
KOTALOPOG TIVOK DY cuuuuaennnveeenercssurncssunncssasncssssesssssicssssssssssssssssssssssesssssssssssssssssesssssssssssss XXVii
LOVTOUOYPOPDIES eeveuvvrossaresssarissssrsssssrsssasssssasssssasssssasss xxix
Chapter 1 INIFOAUCHON c.....euenneeenneennneennnenneecsennnnensensnesssnssssesssessssessssssssssssassssessssssssssssassnns 1
1.1 Motivation and Structure of the Dissertation . 3
Chapter 2 BACKZTOUNueueoneeevoneeeosvrnossunssssansssssnssssssssssssssssssssssssssssssssssessssssssssssssssssses 5
2.1 Integrated Circuits Supply Chain 5
2.2 Hardware Trojan Structure 6
2.3 Hardware Trojan Models 6
2.4 Hardware Trojan Attacks 7
2.5 Hardware Trojan Taxonomy 7
2.6 Challenges Against Hardware Trojan 8
Chapter 3 An Overview on Artificial INTElliGeNnCe........uuuunneennenneennencreensuenseensaeessaensanesnns 9
3.1 Introduction .9
3.2 Artificial Intelligence Term 9
3.3 Machine Learning Term . 9
3.4 Deep Learning Term.... . . 10
3.5 Tasks of Learning 10
3.5.1 SUperviSEd LEAININEc.eeiuieieiiieieeieetie ettt ettt e ettt e see et e bt e e en e eneesseesbeeseeneeenees 10

3.5.2 UnSupervised LEArNINGeeoueeiiriiieieriieste et ettt et et e te sttt esetesaeete e eeenteeneesseesseeseeneeenees 11

3.5.3 Semi-supervised LEeArNiNgG.cceecuiiuieruieriieieeieee ettt ettt e st et ettt et eentesneesbeebeeeeenees 12

3.6 Types of Learning Models 12
3.6.1 Artificial Neural Networks MOEIS........cc.coeiiiiriiiiiieieieie et 12

3.6.2 BayeSIan MOUECISccuviiiieiieiieiicie ettt ettt eteeste et e e beebeesaessaeeseesseesseenseesbeesbeesaensaenreenns 13

3.6.3 CIUSLETING MOACLSc.veeiieiieiieie ettt ettt sttt et e e e e e ssae st e sseesteenseenseesaessaessaenseenses 14

3.6.4 Computer ViSion MOACISc.oocuiiiiiieriieiieiieieete ettt sttt ettt et enaessaessaesseenseenseennes 14

3.6.5 DeciSion TIees MOGEIScceriiriririeieieienie sttt ettt st ettt 14

3.6.6 Deep Neural Networks MOdeLSoo.eeruieriieiiieiieieeiec et 15

3.6.7 Dimensionality Reduction MOdelS...........c.oocuieiiiiiiiiiieee e 16

3.6.8 Ensemble Learning MOEIScocoiiuiiiieiiieieiee et 16

3.6.9 Generative Learning MOdeIS.cooioiiiiiiiiieee et 17
3.6.10 Instance Based MOEIScoouiiiiiiiriiiiieiieeee ettt et 17
3.6.11 Natural Language Processing MoOdelS.ooiiiiiriiieieeeese ettt 18
3.6.12 Re@reSSion MOAEIS.....cc.cevuieiiiiieiiiieeitett ettt ettt ettt e be e e e sta e beesbeessessbessaesssessaesseensennnas 18
3.6.13 Regularization MOELScccuiiiiiieriieiieiieie ettt et e e ste e teebeesbesebesssessaessaesseensesnnas 19
3.6.14 Speech Recognition MOEIS.........ccoveriieriieiieiieieeeeseee ettt sbeebeenaeennas 19
Chapter 4 Countermeasures Against Hardware TrOJaNSeeceeeeeeeeueeevsvresseresseressnenes 21

X1X

4.1 Introduction .21
4.2 Historical Throwback 21
4.3 Categorization of Studies 22
4.4 Distribution of the most Contributing Journal Studies 23
4.5 Studies Trend 25
4.6 SCA-based Approaches 26
4.6.1 SCA-based Power Analysis APPrOAChEscccoviiiiiriinieieie ettt 26
4.6.2 SCA-based Time ANalysis APPIOACHESccueiueruirtirieiieieie ettt ettt ettt ee e sae e e 28
4.6.3 SCA-based Approaches CONCIUSIONS.........c.couieiieiiiiiieeeieerie et et eee e steesreesaeeseseeseeeereenreenns 28
4.7 ML and Simulation based Approaches 30
4.7.1 Logic Testing Simulation APProaches..........ccvevuieeuirieiiierieniieieeieeee e seesieesseesseeaesneseeesseenseenes 30
4.77.2 ML-DaSed APPIOACRHESccvieiieiieeieeieeieet ettt sttt ettt et e st esse e seeseensesnnesneenseenseenes 31
4.7.3 ML and Simulation based Approaches COncluSIONS..........cccverueerierierienieniereere e 35
4.8 Auxiliary Approaches 37
4.8.1 Runtime Monitoring APProaches.........coeeiiiriiriiiiiiieiertet ettt 38
4.8.2 Prevention & Facilitation APProaches.........cccveevieeiiiiiiiinieniieie ettt 39
4.8.3 Auxiliary Approaches CONCIUSIONS.c.ccveriieriieriiiieieestesteeteereereeaesreesteesseesseesessaesseesseesseenns 40
4.9 Countermeasures Against Hardware Trojans Conclusions 42
Chapter 5 GAINESIS: Generative Artificial Intelligence NEtlists Synthesls................. 45
5.1 Introduction .. 45
5.2 Scheme of GAINESIS Methodology 46
5.3 Data set 48
5.3.1 Initial Data Set DeVEIOPIMENLccvveiuieiieiieie ettt ettt eee et e e e steebeeaeeeaeereesaeesseesseessesssesanens 49
5.4 Machine Learning Classifiers Development . 51
5.4.1 GB-DASEA ClaSSIICTc..eevieiiieiieeiieciieeeeie ettt ettt e st et e e et e e sessaesseesseenseenseensesnsesnnens 52
5.4.2 KINN-DASEA CIASSITICTecuvieuiieiiieiieeiieeiiesieete et et e sttt ettt e e e ssaesseesse e seenseenaesanesseenseenseensennsens 53
5.4.3 LR-DASEA ClaSSITICT .. .cuieiieiiieeieeiiesiteieeie ettt ettt et ette st et esseesseenaesnaesseesseenseenseansesssensnens 55
5.4.4 MLP-DaSEA ClaSSIfIeT......ccvieiiierieeiiieeie et eeteesteesteesiteeseeestaeesaaeesebeessaeetseessseessseessseesseensseenses 56
5.4.5 RF-DASEA ClaSSITIOrcuuiiiuiiieiiieciieciie ettt ettt ste et eesaeestveesaaeestbeessaeesbeessseessseessseesseensseensns 58
5.4.6 SVM-DASEA CIASSITICTccuviiriiiiciiieciiiecie ettt ettt ste et sae e tbeestae e tbeesaaeesseessseesseensneenses 59
5.4.7 XGB-DASEA ClaSSITIETcviiirieeiiciieitiecieeie ettt ettt ettt et et e beebesraesteesaeesbeesseenseessessnens 61
5.5 Machine Learning Classifiers Evaluation 62
5.6 GAINESIS Development 64
5.6.1 GAN, CGAN, WGAN & WCGAN AIZOTIthMScevvieiieiieiieieeiesiesieesie e 66
5.7 GAINESIS Evaluation 69
5.8 Synthesis of New Generated Data Sets 72
5.9 New Generated GB-based Classifiers Development .74
5.10 Mixed GB-based Classifiers Development 76
CRAPLEY 6 RESUILS u.nnnuennnneennnerennneicnnerinneeisnnnenssneissssiessssesssssesssssessssssssssssssssssssssassssssssssanes 79
6.1 New Generated Data Sets Results 79
6.2 Mixed Data Sets Results 80
6.3 All Data Sets Results 81

6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-880

Classifier

XX

84

6.5 Comparison to Existing Methods

Chapter 7 Conclusions and FUIUTE WOFKonueenneeenvensuenneensueessnensanssssessseesssesssssssscns

RESOIOICES cuvvennnevevsrvressrersssaressnnsssssssssasisssssssssssssssasssssssssssssssssssssssssssssssssssssessssssssnsssssssssssans

xx1

Katdroyog eikovov

Figure 2.1 IC supply chain and HTs insertion in pre- and post-silicon stages..................... 6
Figure 2.2 Hardware Trojan StrUCUIEeecuieriieeiiieiieeieeeite ettt ere e 6

Figure 2.3 Concept graph presenting (A) combinational and (B) sequential model logics .. 7

Figure 3.1 ML & DL algorithms history timeline...........cccccccvveeviieeiieeeieeeeeeeee e, 20
Figure 3.2 Artificial intelligence vs machine learning vs deep learning.............cccceeueeneee. 10
Figure 3.3 Supervised 1€arning..........ccceeevieiiieriieiiienie ettt 11
Figure 3.4 Unsupervised 1Carning..........cccueevuieriieriierieeiieeie et ete e sene e sae v e 12
Figure 3.5 Semi-supervised 1€arning...........cccvieeiiiieeiiieeniiieeriie et eee e e 12
Figure 3.6 Artificial neural networks modelcccooiiiiiiiiiiiiii e, 13
Figure 3.7 Bayesian MOdel........c.coouiiiiiiiiiiiinieeitee ettt et s 13
Figure 3.8 Clustering modelcccueeiiiiiiiiiiiiiieieeee et 14
Figure 3.9 Computer vision Model..........ccoeeciiiiiiiiiiiieciieeeeeee e 14
Figure 3.10 Decision trees MOdelocuiiiiiiiiiiiiiiieeiieie et 15
Figure 3.11 Deep neural networks model............cccooviieiiiiniiiiiiiniicieeeeee e 15
Figure 3.12 Dimensionality reduction model............ccoecvveriieviieniienienieeeece e 16
Figure 3.13 Ensemble learning model...........ccooooiiiiiiieiiieeiieeeeeeeeeeee e 17
Figure 3.14 Generative learning modelccccooveviiiiiniiiiiiiniiceeeeeee 17
Figure 3.15 Instance based Modelcc.oovuiiiiieiiiiiiiieeeee e 18
Figure 3.16 Natural language processing modelc.cocuvevvieniiinieniiieiierie e 18
Figure 3.17 Regression MOdel..........cccuiiiiiiiiiiiiiieecieece ettt 19
Figure 3.18 Regularization modelcoooiiiiiiiiiiiiii e 19
Figure 3.19 Speech recognition model...........cccoeeeuiiiiiiiiieniiieieiceece e 20
Figure 4.1 Categorization of countermeasures approaches against HTs..............ccccceueeneee. 21
Figure 4.2 History timeline for countermeasures against HTS..........ccccevieiiniencnniencenen. 22
Figure 4.3 Categorization Of STUAIES.......cccvieeiiiieeiiieeiie ettt e e 23
Figure 4.4 Categorization of studies per Sub-Cate€gOoriescoceevuervuereenieerieneenierieneennens 23

Figure 4.5 Geographical distribution of the contribution of each country to the research
field focusing on countermeasures against HTS VIIUSES........ccccccvevevieviieniieniieniieieeeieeinens 24
Figure 4.6 Distribution of the international journals and conferences and concerning

applications of studies per SUD-CAtEZOTIS.cevuvirriieriieiierie ettt et 25

xxiii

Figure 4.7 Countermeasures trenNd...........coeerieiirieriieienieieeie ettt 26

Figure 4.8 Number of studies in SCA-based approaches categorycccceeevvvevcrveenveeennnen. 29
Figure 4.9 Benchmark in SCA-based approaches categoryccoceveevievieneencrnieneenen. 29
Figure 4.10 Features types in SCA-based approaches category..........ccceevveeeieerieenieenneennnn. 30
Figure 4.11 Number of studies in ML and Simulation based approaches category............ 36
Figure 4.12 Benchmark in ML and Simulation based approaches category..................... 36
Figure 4.13 Features types in ML and simulation-based approaches category................... 37
Figure 4.14 Number of studies in Auxiliary based approaches category............cccceeueeneee. 41
Figure 4.15 Benchmark in Auxiliary based approaches categorycccoeevevvevverieenneenee. 41
Figure 4.16 Features types in Auxiliary based approaches categorycccceeevverveeneennee. 42
Figure 4.17 Number of studies for all the categoriesccccvveeviieeriieeiieeeieeeee e, 43
Figure 4.18 Benchmark for each countermeasure categoryccceevveerieenieenieenieenieenne. 44
Figure 4.19 Features types for each countermeasure category..........coceevveerveerieenieenieennee. 44
Figure 5.1 Steps for the development of an ML or DL-based model............c.cccoeevrennenneee. 46
Figure 5.2 Scheme of our Artificial Intelligence-based approach for safeguarding

integrated circuits at gate-level netlist phase against hardware Trojans, GAINESIS. 48
Figure 5.3 GB al@Orithm..........cccuiiiiiiiiiiiciee e 52
Figure 5.4 Feature importance for GB-REAL-880 classifier..........ccccecveevieniienieniieieeee. 53
Figure 5.5 KNN al@OTTthimcooiiiiiiiiiciieceece et 54
Figure 5.6 LR al@OTithimccc.ooiiiiiiiiieeee e 55
Figure 5.7 MLP algOrithimcccuioiiiiiiiiiieiieeceee ettt 57
Figure 5.8 RF al@OTithmccccoooiiiiiiiiiiiiciececee et e 59
Figure 5.9 SVM al@Orithimcoooiiiiiiiiiiicceece et e 60

Figure 5.10 Histograms of the performance of our seven ML models on our REAL-880
ETAININIE S c.vvevvieiieeiieetie et et e et e et e et e eetteeteesate e bt esseeenbeessaeenseensseensaeesseenseansseenseesnseenseannnas 64

Figure 5.11 Histograms of the performance of our seven ML models on our REAL-880 test

S ettt et b e et e e e bt st e h e st ea e sae e e n e san e e neenaneeane 64
Figure 5.12 Data distributions by feature and classccoeoeeriiiiiiiiiiiienieeeeeeee, 65
Figure 5.13 Generator loss values of our four models for each epoch...........ccceeeriininnin. 70
Figure 5.14 Discriminator loss values of our four models for each epoch............c..c..c...... 71

Figure 5.15 Presentation of how our best-performing WCGAN-based model learned to
synthesize new generated samples based on real samplescccoooeevieiiiiniiniiiniene 71
Figure 5.16 Presentation of how our worst-performing GAN-based model learned to

synthesize new generated samples based on real samplescccceevveeriieciienieniienieene, 72

XX1V

Figure 5.17 Histograms with the distribution of TF and TI samples for our 13 data sets... 74
Figure 5.18 Concept graph presenting the most importance features: (a) GB-WCGAN-200
classifier; (b) GB-GAN-200 classifier; (c) GB-WCGAN-400 classifier; (d) GB-GAN-400
classifier; (¢) GB-WCGAN-600 classifier; (f) GB-GAN-600 classifier..........c..cccceeveenene 76
Figure 5.19 Concept graph presenting the most importance features: (a) GB-WCGAN-
Mixed-200 classifier; (b) GB-GAN-Mixed-200 classifier; (c) GB-WCGAN-Mixed-400
classifier; (d) GB-GAN-Mixed-400 classifier; (¢) GB-WCGAN-Mixed-600 classifier; (f)
GB-GAN-MiXed-6000 ClasSTIETcccuieiieiiieiieeie ettt et 77
Figure 6.1 Histograms of the performance of our new GB-based classifiers on our new
ENETALEd trAINING SCLS. ..eovvierieriieitieetieitieeteeieeeteerteeebeebeessaeeteessseesseessseeseessseenseessseensaens 79
Figure 6.2 Histograms of the performance of our new GB-based classifiers on our new
ENETALEA TS SETS. 1..viiutieiiiietie ittt ettt et e et e sat e e bt e s ateenbeesabeenbeesnaeeseens 80
Figure 6.3 Histograms of the performance of our new GB-based classifiers on our mixed
ETAINIIE SCES. ..eeeuvieetiieeittteeiteeeitteeeteeeesteeestaeeateeessseeesseeasseesnsseeensseesssseessseessnseeensseesnsseesnnns 81
Figure 6.4 Histograms of the performance of our new GB-based classifiers on our mixed
1S AR £SO O OO OO 81
Figure 6.5 Histograms of the performance of our 13 GB-based classifiers on our 13 test
SIS, ettt ettt bt h e b e bt a bt e bt e ea bt e bt e ea bt e bt e ea bt e bt e e hb e e bt e eab e e bt e eabeebeenaneenne 82
Figure 6.6 Concept graph presenting ROC and Precision-Recall curves: (a) ROC curve for
all the GB-based classifiers for the REAL-880 data set; (b) Precision—Recall curve for all
the GB-based classifiers for the REAL-880 data set; (c) ROC curve for all the GB-based
classifiers for the WCGAN-600 data set; (d) Precision—Recall curve for all the GB-based
classifiers for the WCGAN-600 data set; () ROC curve for all the GB-based classifiers for
the GAN-600 data set; (f) Precision—Recall curve for all the GB-based classifiers for the
GAN-600 data set; (g) ROC curve for all the GB-based classifiers for the WCGAN-Mixed-
600 data set; (h) Precision—Recall curve for all the GB-based classifiers for the WCGAN-
Mixed-600 data set; (i) ROC curve for all the GB-based classifiers for the GAN-Mixed-
600 data set; (j) Precision—Recall curve for all the GB-based classifiers for the GAN-
MiXEd-6000 dAtA SETcoueiuiiriiiiieieitiet ettt sttt st st 84
Figure 6.7 Histograms of the performance of our new best-performing GB-WCGAN-
Mixed-600 classifier compared with our GB-REAL-880 classifier on the REAL-880 test

Figure 6.8 Histograms with the performance comparison between existing approaches and

our approach ATLAS. ...t e e e e e ebee e ebee e nbeeeneeas 86

XXV

XXV

Katdroyog mvaxkov

Table 4.1 Summary of approaches in SCA-based power analysis.........ccccceceereeneriineenens 27
Table 4.2 Summary of approaches in SCA-based time analysis.........cccceeervereenerieneennen. 28
Table 4.3 Summary of LT simulation approaches.ccecueeveeriienieniiieniieeie e 31
Table 4.4 Summary of ML-based approaches...........ccceecuveeviiieriieeriieeieece e 33
Table 4.5 Summary of RM approaches..........c.ccoeeuerienieeiieniiniiienecseeieeecse e 38
Table 4.6 Summary of PF approaches...........cccceeuiiiiieiiieiieiiicieeee et 40
Table 5.1 Table with our eleven area and power analysis features...........ccceeevveeueenieennnns 50

Table 5.2 Table with the range of hyperparameters for the GB-REAL-880 classifier 53
Table 5.3 Table with the range of hyperparameters for the KNN-REAL-880 classifier 55
Table 5.4 Table with the range of hyperparameters for the LR-REAL-880 classifier........ 56
Table 5.5 Table with the range of hyperparameters for the MLP-REAL-880 classifier..... 58
Table 5.6 Table with the range of hyperparameters for the RF-REAL-880 classifier 59
Table 5.7 Table with the range of hyperparameters for the SVM-REAL-880 classifier 61
Table 5.8 Table with the range of hyperparameters for the XGB-REAL-880 classifier..... 62
Table 5.9 Table with the range of hyperparameters for the generative learning models 67

Table 5.10 GAN and WGAN models generator Nnetworkccceeeveevcieencieenciieeeiee e, 68
Table 5.11 CGAN and WCGAN models generator networkc..cceceevervieniencnieneenen. 68
Table 5.12 GAN and WGAN models discriminator networkcccccevevieneencnieneenen. 69
Table 5.13 CGAN and WCGAN models discriminator networkccccceceveenerieneennen. 69

Table 5.14 Table with the range of hyperparameters for the new generated GB-based
CLASSTEIETS ...ttt ettt ettt et e st e e b e s st e e bt esabeenbeesabeenbeesabeenbeesnaeeseens 75
Table 5.15 Table with the best values of hyperparameters for the mixed GB-based
CLASSITIETS ..ttt sttt et st b et ettt st e bt enne e 76
Table 6.1 Table with the comparison of our method with existing methods for the same

DENCIIMATK ... e e et e e e e e e e et e e e e e e e e e e e eraeaeeeeeeeeaananaas 87

XxXVvii

YOVTOPOYPOPiES

Application-Specific Integrated Circuit ASIC
Area Under Curve AUC

Artificial Intelligence Al

Artificial Neural Networks ~ ANNs

Average Precision AP

Bayesian Models BM

Computer Process Unit CpPU

Computer vision CvV

Conditional Generative Adversarial Networks
Convolutional Neural Networks CNNs
Coordinate Descent CD

Decision Trees DT

Deep Learning DL

Deep Neural Networks DNNs
Dimensionality Reduction DR
Electronic Design Automation EDA
Ensemble Learning EL

False NegativeFN

False Positive FP

Field-Programmable Gate Arrays ~ FPGA
Gate Level Netlist ~ GLN

Generative Adversarial Networks ~ GANs
Generative Artificial Intelligence NEtlists SynthesIS
Generative Learning GL

Gradient Boosting GB

Graphic Database System II GDSII

Graphic Process Unit GPU

hArdware Trojan Learning AnalysiS ATLAS
Hardware Trojans ~ HTs

Instance Based IB

Integrated Circuits ICs

Intellectual Property 1P

Internet of Things IoT

K-Nearest Neighbors KNN

Limited-Memory Broyden—Fletcher—Goldfarb—Shanno

Logic Testing LT

Logistic Regression LR

Machine Learning ML

Multilayer Perceptron MLP

Natural Language Processing NLP
Placement & Routing P&R
Prevention-Facilitation PF

Random Forest RF

Receiver Operating Characteristic =~ ROC
Rectified Linear Unit ReLU

XX1X

CGANs

GAINESIS

LM-BFGS

Register Transfer Level RTL

Root Mean Square propagation RMSprop
Runtime Monitoring RM

Side Channel Analysis SCA

Speech Recognition SR

Stochastic Average Gradient SAG

Stochastic Gradient Descent SGD

Support Vector Machine SVM

Tangent Tanh
Trojan-Free TF
Trojan-Infected TI
True Negative Rate TNR
True Negative TN

True Positive Rate ~ TPR

True Positive TP

Wasserstein Conditional Generative Adversarial Network WCGAN
Wasserstein Generative Adversarial Networks WGAN

Xtreme Gradient Boosting XGB

XXX

Chapter 1 Introduction

Every year, more and more innovative applications based on technology are developed and
implemented in every aspect of our lives. The majority of these applications are based on
Internet of Things (IoT) devices and Artificial Intelligence (Al), aiming to provide us with
the ability to remotely access information and data from any device and automate tasks.

However, all these technological breakthroughs do not come without disadvantages.

[oT devices consist mainly of sophisticated Application-Specific Integrated Circuit
(ASIC)—Integrated Circuits (ICs). To reduce operating costs and facilitate mass production,
design companies frequently outsource IC fabrication to third-party foundries. This process
increases the risk of intrusion attacks in the form of hardware viruses, also known as
Hardware Trojans (HTs). In the field of electronics, HT viruses are a critical problem that
has the potential to become an outbreak in the coming years, presenting a significant threat
both technologically and socially. The majority of the studies are concerned for the
development of countermeasures against HTs for Field-Programmable Gate Array (FPGA)
circuits at post-silicon stage. There is a limited information and published studies for the
ASICs and specifically for the pre-silicon stage [1-25]. ASICs are challenging due to the
variety of design phases especially on the pre-silicon stage and for the need of professional

tools for the design of each phase.

HTs are related to unwanted modifications to circuits that occur during the pre-silicon and
post-silicon stages. Because of the complexity of modern circuits, HTs can be inserted at
any phase of IC development and remain inactive until activated by a variety of activation
mechanisms. HTs are related to total circuit collapse, unexpected IC failures and the leakage
of sensitive information [16]. Therefore, developing well-designed and efficient HT
countermeasures is crucial. The HT structure consists of an activation mechanism (trigger)
and an effect (payload). HTs remain totally silent and via rare events or signals their triggers
are activated [16], based on two logics, sequential or combinational. Sequential HTs need a
sequence of rare signals for their activation, while the activation of combinational HTs is
based on the simultaneous presence of a combination of rare signals. Furthermore, HT
attacks are grouped into two categories of attacks, cryptographic engine and processor

attacks. Cryptographic engine attacks try to leak encrypted information through various

attack mechanisms, while the general-purpose processors aim to degrade or even to totally

destroy the system via the memory, at lower levels of the processor and kernel.

The question that quickly comes to mind is, who gains from the insertion of HTs into ICs?
A competitor, for example, might put an infected circuit into another company's IC to
discredit it, diminish its market share, consumer confidence, and earnings. Another HT use
case involves the sabotage of military equipment and infrastructure between countries

through HT cyber warfare [17].

Ideally, any unwanted alteration applied to an IC should be detected at any phase of the pre-
silicon (e.g., Design Rule Checking—DRC, and Layout vs. Schematic—LVS checking) and
post-silicon verification stages. However, the pre-or post-silicon stage of an IC requires the
IC golden model. This information is not always available, particularly for designs that are
based on IPs that originate from mediator manufacturers. HT attacks can be divided
according to the number of phases for each stage in the circuit’s production chain at the
Register Transfer Level (RTL), Gate Level Netlist (GLN), Placement & Routing (P&R) and
Graphic Database System II (GDSII) for the pre-silicon stage, as well as fabrication and
testing—assembly for the post-silicon stage. Depending on the targeted phase, the attacker
might obtain full access to design files and source code, or compromise computer-aided
design tools and scripts to output a modified IC representation without altering the source
code. Fabrication attacks, on the other hand, take place after tape-out and can remove or add

components via layout geometry modification, reverse engineering or IC metering.

Machine Learning (ML) [18] and Deep Learning (DL) [19] in particular represent a
collection of algorithms for modeling patterns embedded in data. DL has become very
popular, especially in the last decade, for the development of solutions in multiple scientific
fields, the industry, bioinformatics, agriculture, etc. [20][21]. In the hardware security field,
a plethora of ML-based approaches for HT detection has been introduced in the last six years
[22][23]. For the pre-silicon stage, these studies aim for the classification of normal and HT-
infected circuits at the GLN phase, using area and power analysis GLN features such as
number of gates, number of nets, number of multiplexers, number of flip-flops, number of
cells and number of ports, as well as total, switching and combinational power. The most
frequently used ML algorithms are Support Vector Machine (SVM) and Random Forest
(RF), with SVM typically ranking as the best-performing model [24][25][26][12].

Most ML-based studies in the field of HTs utilize the public Trust-HUB [28][29] library of
circuit designs for extracting features related to both HT-free and HT-infected ICs. Utilizing

the Trust-HUB repository has three major disadvantages: since the majority of circuits are
designed for FPGA, there is an imbalance between HT-free (N = 18) and HT-infected (N =
880) circuits, the circuits do not have diversity, and they are large in size, which means that
they are easier to detect. The lack of HT-free and diversity designs leads to the creation of
imbalanced data sets and subsequently to highly unreliable models with low generalization
capacity which are incapable of detecting small-in-size HTs. It is becoming evident that the
HT detection field requires a much higher number of circuit and diversity designs than what
is already available in Trust-Hub, for developing robust ML models. This is not an easy task,
since the majority of IC designs are protected by Intellectual Property (IP) rights and will
hardly ever be deposited in public repositories such as Trust-HUB. Thus, the community
will have to become creative and make the most out of the available circuit designs from

public resources.

1.1 Motivation and Structure of the Dissertation

The main topic of this research is to provide a solution to the Trust-HUB HT-free (TF) and
HT-infected (TI) circuits imbalance problem, for the first time, by developing a feature
generative approach based on Generative Adversarial Networks (GANs), named
GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS. GAINESIS utilizes a
Wasserstein Conditional Generative Adversarial Network (WCGAN) model for the
synthesis of new HT-free and HT-infected circuit features from the GLN phase. GANs are
mostly used in the computer vision field for generating artificial images on various domains,
such as realistic photographs of human faces [30], textual descriptions of birds and flowers
[31], reconstructing damaged photographs of human faces [32], removing rain and snow
from photographs [33] and many other functions. For the development of GAINESIS, the
Design Compiler NXT tool was utilized to synthesize 880 circuits (18 TF and 862 TI) at the
GLN phase based on designs deposited in Trust-HUB. In-house-developed scripts were used
to extract power and time features and to create the original data set. Also, multiple ML
algorithms were tested on the original data set and the best-performing one (Gradient
Boosting—GB) was used to further benchmark multiple GAN flavors and select the one that
was better suited to the HT detection field (WCGAN). Based on the final GAINESIS model,
new synthetic data sets of different sizes were generated and used to train distinct GB models
to assess the applicability of GANs in the HT detection field. The best performed GB-
classifier was picked as our main classifier with the name ATLAS: hArdware Trojan

Learning AnalysiS and compared to existing methods at the same unknown benchmark.

The remaining part of this dissertation is organized as follows: a detailed description of the
HTs is given in Chapter 2. Specifically, are mentioned in detail HTs structure, models,

attacks and taxonomy.

An overview of Al is presented in Chapter 3. First, we present the terms about Al, ML and
DL. Next, we present the tasks of learning and the differences and then we present the most

significant types of learning models.

Countermeasures against HTs are presented in Chapter 4. Specifically, we present a
historical throwback of countermeasures. Then we present the categorization of the studies
to journal and conference approaches. Also, we present the distribution of the most
contributing journal and conference studies and we show the studies trend through the years.
Lastly, we present in detail the categorization of countermeasures approaches against HTs
through three main categories and six sub-categories. Specifically, we mention the function
of each represented sub-category and category with tables and figures and we present in

aggregate the function, benchmark and features for the approaches for each category.

Chapter 5 presents the methodology of our GAINESIS approach. First, we present our
scheme of GAINESIS methodology. Next, we mention our data set and features
development. Then, we present our ML-based classifiers development for the classification
of HT-free and HT-infected circuits and their evaluation. Specifically, seven different ML
algorithms were used and compared for the development of our main classifier. Next, we
present the development and evaluation of our GAINESIS approach. Lastly, we present our
new generated and mixed data sets, as well as the development of our new generated and

mixed based classifiers.

Chapter 6 presents the results of our classifiers for new generated and mixed classifiers
compared with our initial classifier. Finally, we present the comparison of our ATLAS

classifier with existing state-of-the-arts methods.

Conclusions and future work are presented in Chapter 7.

Chapter 2 Background

2.1 Integrated Circuits Supply Chain

To have a thorough grasp of the topic of HTs, the difficulty of preventing their contagious
nature, and the challenges of identifying them while ensuring the smooth operation of ICs,
we must first have a strong understanding of the modern circuit production chain and
especially the production chain of the ASICs. ASICs production chain consists of two stages,
pre- and post-silicon stages. The pre-silicon stage is the circuit design period and consists of
steps: RTL, GLN and P&R. And the post-silicon stage is the fabrication period of the circuit
and consists of the Side Channel Analysis (SCA) phase.

Specifically, at RTL phase describes the specifications that the circuit will have through the
usage of a Hardware Design Language (HDL) like Verilog or VHDL. When IC design and
integration are completed at RTL, the design must be synthesized to a GLN. GLN is
characterized as the logic synthesis phase and RTL is translated to GLN. The logic synthesis
phase is done via professional Electronic Design Automation (EDA) tools like Cadence
Genus Synthesis Solution, Synopses Design Compiler NXT etc.). These tools provide area,
power and timing analysis of the circuit. The last phase is the P&R and is known as the
physical design phase where the layout level is created via the GLN and is produced the final
GDSII of the circuit.

So, HT attacks are divided into four general groups for the pre-silicon stage (Figure 2.1),
i.e., RTL, GLN, P&R and GDSII as well as Fabrication and Testing/Assembly for the post-
silicon stage. Depending on the targeted phase, the attacker might obtain full access to source
code and design files, or compromise computer aided design tools and scripts to output a
modified IC representation without altering the source code. On the other hand, fabrication
attacks take place after tape-out and can add or remove components via reverse engineering,

layout geometry modification or IC metering (Figure 2.1).

Pre-Silicon

Register Transfer Placement &
Level Routing

Fabrication

2
20

Testing -Assembly

4

Gate Level Graphic Database
Netlist System |

Post-Silicon

Figure 2.1 IC supply chain and HTs insertion in pre- and post-silicon stages

2.2 Hardware Trojan Structure

The typical structure of an HT consists of two mechanisms, triggers and payloads (Figure 2.
2). Triggers are related to rare signals or events [34] and payloads with the activation of
malicious functions. An HT aims to remain stealthy - to be undetectable during design
simulation or testing and to be activated under rear conditions. So, an HT “wakes up” when

the rare signal or event appears and via the payload mechanism attacks the IC.

1>

TRIGGER

The first part of an HT structure
is the activation mechanism
known as trigger Trigger is
activated wia rare events or
signals.

CIRCUIT SIGNAL

Circuit signal or event is a part
of the normal circuit. When this
signal ar event appears then
trigger is activated which
activates payload and the attack
is started.

Figure 2.2 Hardware Trojan structure

2.3 Hardware Trojan Models

As mentioned HTs are designed to be undetectable, their structure is consisted of a trigger

and a payload mechanism and can be implemented in all pre- and post-silicon phases of the

ICs production chain. Another characteristic of HTs is their logic models. Logic models are
associated with the trigger mechanism and especially how the rare signal or event will
activate the trigger mechanism. HTs are designed to have two logic models, a combinational
or a sequential [34]. In combinational logic models the trigger mechanism is activated from
a set of simultaneous rare signals or events (Figure 2.3A) and in sequential logic models

from a series of rare events or signals (Figure 2.3B).

: ; -

_ | Honr

Figure 2.3 Concept graph presenting (A) combinational and (B) sequential model logics

2.4 Hardware Trojan Attacks

The aim of HTs is to affect the normal functioning of the infected circuit. Thus, the HTs
attacks can be divided into two types of attacks: those aimed at destroying the device known
as general purpose processors attacks and those aimed at leaking sensitive information,
known as cryptographic engine attacks. Cryptographic engine attacks aim at the crypto
engine of the infected circuit through various attack mechanisms and leak encrypted
information. General purpose processors attacks aim at the lower levels of the processor,
kernel, memory and secret keys and degrade the system, even down to its total destruction.
For example, these types of HTs can be activated under rare signals or events and disable

the secure boot mechanism of the infected circuit [35][36].

2.5 Hardware Trojan Taxonomy

There is no formal taxonomy for HTs. Each study has its taxonomy structure. Tehranipoor
et al. [37] presented a taxonomy of HTs based on three main characteristics of HTs, physical,
activation and action. As physical characteristics are considered the type, size or structure of
an HT. Activation characteristics are divided into external and internal activation
mechanisms of an HT and action characteristics are considered the types of HT attacks to

the infected circuit. Karri et al. [38] proposed a taxonomy model for HTs, based on five

characteristics: insertion phase, abstraction level, activation mechanism, effect and
localization. While Bhunia et al. [34], proposed a taxonomy model based on trigger and

payload mechanisms.

2.6 Challenges Against Hardware Trojan

Dealing with HTs has become one of the most important problems in the science of hardware
security. Every year new studies are developed to address them. The main reason for the
difficulty in dealing with HTs is main a large number of different cases of HT infections.
HTs can be inserted at any stage and phase of ICs development, can attack at any unit of the
ICs, processors, memory units, etc., Also, HTs can affect the ICs via a variety of attacks and
can have different physical layouts. In addition, the stealthy nature of HTs and their ability
to activate under rare conditions combined with the fact that the more complex a circuit is,

the more difficult it is to deal with.

Chapter 3 An Overview on Artificial Intelligence

3.1 Introduction

Every year more and more people refer to terms like AI, ML and DL. This happens because
a technology trend is the development and use of Al-based technologies on a professional or
personal level. As a result, the meaning of these terms has been lost. So, it is important to

understand that all these terms are part of the Al scientific field.

In this chapter a detailed reference is made to the science of Al. Specifically, this chapter of
the thesis is has presented differences between the AI, ML and DL terms. Also, are presented
with details the learning tasks of Al like, supervised and unsupervised learning. Furthermore,
a plethora of learning models and algorithms are discussed exhaustively. The aim of this
chapter is for the readers to be able to distinguish the differences between the AI, ML and
DL, as well as to comprehend how each learning model works and when their algorithms

are applied.

3.2 Artificial Intelligence Term

The term the modern Al first was introduced in 1956 by John McCarthy through an academic
conference. McCarthy defined Al as the science of making intelligent machines. So, Al can
be defined as the scientific field that aims to teach machines to think without the need for
human intervention. Al consists of a broad area of computer science and can be categorized
into three main categories, Al-narrow, Al-general and Al-super. Al-narrow is goal-oriented
and has been programmed to complete a single task. Al-general allows machines to learn
and apply their intelligence to solve any problem by mimicking human intellect and/or
behaviors and in Al-super machines are capable of outperforming even the best humans in

terms of intelligence.

3.3 Machine Learning Term

ML term was introduced in 1959 by Samuel et al. [18] and it was defined as the scientific
field that allows machines to learn without being strictly programmed. Specifically, ML
consists of a subset of Al that uses statistical learning algorithms for the development of

smart systems. Without being explicitly programmed, ML-based systems can learn and

improve on their own. The ML algorithms can be categorized into three main categories,

supervised, unsupervised and semi-supervised learning.

3.4 Deep Learning Term

DL is a subset of ML techniques utilizing multiple layers of training with more reliable
performance and fastest speed. The DL technique was inspired by the way a human brain
analyzes information. DL-based systems consist of interrelated layers for the classification
or prediction of information. In Figure 3.1 is presented in brief the differences between Al,

ML and DL.

%
\ 3_}3_&
Y

e

ARTIFICIAL MACHINE DEEP
INTELLIGENCE LEARNING LEARNING

Technigues that allow A subset of Al techniques A subset of ML technigques

machines to think without that allow machines to utilizing multiple layers of

the need of human improve based on prior training with advantages of

intervention experience greater performance and
speed

Figure 3.1 Artificial intelligence vs machine learning vs deep learning

3.5 Tasks of Learning

Al, ML or DL algorithms can be categorized into three categories of learning tasks,
supervised, unsupervised and semi-supervised learning. The main difference is that
supervised learning uses labeled data to help in prediction, while unsupervised does not.
Semi-supervised learning uses data mixed with labeled and unlabeled examples. However,
there are some distinctions between the three techniques, as well as key areas where one
surpasses the others. In this section are presented the differences between the three learning

tasks.

3.5.1 Supervised Learning
Supervised learning uses data sets with labeled samples as inputs and outputs for the

development of an ML or DL-based model. Supervised learning can be used as a solution

10

for two categories of problems, classification or regression. In the classification problems a
labeled data set is split into sets, the training and test set for the development of a model.
The aim is the model to be able to classify with high performance the samples of the test set.
For example, a classic supervised classification learning problem is the classification of
original from spam emails. Furthermore, in the regression problems aim of the model is
through a labeled data set to understand the relationship between dependent and independent
variables of the data set. Regression models are useful for predicting numerical values based
on various data samples, such as sales revenue estimates for a certain business. In Figure 3.2

is presented a typical figure of supervised learning.

1S

21

o) 0
M) o||>>
ool

Figure 3.2 Supervised learning

3.5.2 Unsupervised Learning
Unsupervised learning uses data sets with unlabeled samples as inputs and outputs for the

development of an ML or DL-based model. In unsupervised learning-based models from the
data set it derives patterns between the features and when the model analyzes new data, it
can classify the new samples into a class, based on the already learned feature patterns.
Unsupervised learning can be used as a solution for clustering or dimensionality reduction
problems. In the clustering problems aim of the model is via an unlabeled data set to group
the data set. In dimensionality reduction problems aim of the model is to convert the higher
dimensions data set into lesser dimensions without losing information, to reduce the poor
performance which is produced from the data sets with a large number of features. In Figure

3.3 is presented a typical figure of unsupervised learning.

11

A
Ao |AAl
OCAo 00
00

Figure 3.3 Unsupervised learning

3.5.3 Semi-supervised Learning
Semi-supervised learning uses data sets with mixed samples like, labeled and unlabeled

samples as inputs and outputs for the development of an ML or DL-based model. There is a
desirable prediction problem, but the model must learn the structures to arrange the data and
produce predictions. Classification and regression are two common semi-supervised
problems. Unsupervised and semi-supervised learning may be more tempting options
because relying on domain expertise to label data accurately for supervised learning can be
time-consuming and costly. In Figure 3.4 is presented a typical figure of semi-unsupervised

learning.

op
p O

o o(>»
ek

Figure 3.4 Semi-supervised learning

3.6 Types of Learning Models

3.6.1 Artificial Neural Networks Models
Artificial neural networks (ANNs) are inspired by the functionality of the human brain.

ANNs emulate complicated tasks like cognition, learning, decision making and pattern
generation [39]. The human brain is made up of billions of neurons that communicate with
one another and process any information that is sent to them. Based on the same philosophy,
an ANN is a simplified model of the structure of a biological neural network, which is made
up of interconnected processing units that are organized in a specific topology. Specifically,
ANNSs consist of three categories of layers, input, hidden and output layers. Input layers fed

the data set into the system. Hidden layers produce the learning of the model and the

12

decision/prediction is given from the output layer. ANNs are supervised models that are
commonly used to solve regression and classification problems. The most common ANNs-
based algorithms are perceptron [40], multi-layer perceptron [41], back-propagation [42],
resilient back-propagation [43] and counter propagation algorithms [44]. Also, other
common ANNSs algorithms are radial basis function networks [45], Kohonen networks [46],
Hopfield networks [47], generalized regression networks [48], autoencoder [49], adaptive-
neuro fuzzy inference systems [50], extreme learning machines [51] and self-adaptive
evolutionary extreme learning machines [52]. In Figure 3.5 is presented a typical structure

of an ANN model.

Figure 3.5 Artificial neural networks model

3.6.2 Bayesian Models
Bayesian models (BM) are a type of probabilistic graphical model in which the analysis is

carried out using Bayesian inference. This model belongs to the domain of supervised
learning and can be used to solve classification or regression problems. Some of the most
common BM-based algorithms are Bayesian network [53], bayesian belief network [54],
naive Bayes [55], multinomial naive Bayes [56] and Gaussian naive Bayes [57]. In Figure

3.6 is presented a typical figure of a Bayesian model.

Posterior

Prior

Figure 3.6 Bayesian model

13

3.6.3 Clustering Models
As mentioned, clustering-based models [58] are typical applications of unsupervised

learning models. These types of models are used to find natural groupings of data, known as
clusters. Common clustering algorithms are the k-means [59], hierarchical clustering [60]

and the expectation maximisation algorithm [61]. In Figure 3.7 is presented a typical

Figure 3.7 Clustering model

structure of a cluster-based model.

A
Ao
e

3.6.4 Computer Vision Models
Computer vision (CV) models aim to understand information from digital images or videos.

CV-based models are concerned with the automatic extraction, analysis and understanding
of useful information from a single image or a sequence of images. It involves the
development of a theoretical and algorithmic basis to achieve automatic visual
understanding. Some of the most common algorithms are, HRNet-OCR [62],
FixEfficientNet [63] and EfficientDet [64]. In Figure 3.8 is presented a typical structure of
a CV model.

,:._-- —+ Cat

Figure 3.8 Computer vision model

3.6.5 Decision Trees Models
Decision trees (DT) consist of classification or regression models based on a tree-like

architecture [65]. In DT-based models, the data set is progressively grouped into smaller

homogeneous subsets known as sub-populations, while an associated tree graph is produced

14

simultaneously. Each internal node of the tree structure reflects a separate pairwise
comparison on a given feature, and each branch indicates the outcome of this comparison.
Following the path from the root to the leaf, leaf nodes represent the final prediction or
decision of the process. Common DT-based algorithms are classification and regression trees
[66], chi-square automatic interaction detector [67], and the iterative dichotomiser [68]. In

Figure 3.9 is presented a typical structure of a DT model.

A

Figure 3.9 Decision trees model

3.6.6 Deep Neural Networks Models
Deep neural networks (DNNs) [69] consist of a modern version of ANNs. DL-based models

consist of the new era of Al while more and more models are developed based on them. As
the ANNSs, the DL-based models consist of three categories of layers, input, multiple hidden
and output layers. The significant difference between ANNs is the usage of multiple
processing layers which can learn complex data representations via multiple levels of
abstraction. Furthermore, one more advantage of DL-based models is that the feature
extraction can be performed by the model itself. These models can be used for supervised,
unsupervised and semi-supervised learnings. The most common DL-based algorithms are
convolutional neural networks [70], deep Boltzmann machines [71], deep belief networks
[72], autoencoders [73], recurrent neural networks [74] and long short-term memory

networks [75]. In Figure 3.10 is presented a typical structure of a DNN model.

Figure 3.10 Deep neural networks model

15

3.6.7 Dimensionality Reduction Models
Dimensionality reduction (DR) based models aim of the models is to convert the original

higher dimensional data set into lower dimensional representation to preserve as much
information from the original data as feasible and to reduce the poor performance which is
produced from the data sets with a large number of features. DR-based models can be used
for supervised and unsupervised learning types and usually are applied to solve regression
problems. The most common DR-based algorithms are principal components [76], partial
least squares [77] and linear discriminants [78]. In Figure 3.11 is presented a typical structure

of a DR model.

Figure 3.11 Dimensionality reduction model

3.6.8 Ensemble Learning Models
Ensemble learning (EL) models are designed to improve the prediction performance of a

given statistical learning or model fitting technique by developing a linear combination of
simpler base learners. So, each trained simpler base learner consists of a single hypothesis.
EL-based models or multiple-classifier systems enable hybridization of hypotheses that were
not produced by the same base learner, producing improved outcomes in the case of high
variety among the single models. Typically, in EL-based models as the base learner is used
the DT architecture. Common EL-based algorithms are AdaBoost [79], bootstrap
aggregating [80], boosting technique [81], gradient boosting machines [82] and random
forest [83]. In Figure 3.12 is presented a typical structure of an EL model.

16

Figure 3.12 Ensemble learning model

3.6.9 Generative Learning Models
Generative learning (GL) models aim to generate new synthetic samples. A typical GL

model consists of two neural networks, the generative network and the discriminative
network. The generative network learns how to produce new synthetic samples according to
the initial data set and the discriminative network distinguishes the generated from the initial
original samples. GL-based models mostly are used to generate new samples in art, video
games and advertising. Common GL-based algorithms are GANs [84], conditional
generative adversarial networks (CGAN) [85], Wasserstein generative adversarial network
WGAN [86], WCGAN [87], StyleGAN [88] and CycleGAN [89]. In Figure 3.13 is presented

a typical structure of a GL model.

A
Aog,—| G
oach

X —B+—
J —0—

Figure 3.13 Generative learning model

3.6.10 Instance Based Models
Instance based (IB) models are memory-based models that learn from the comparison of

new cases to instances in the training data set. These types of models construct hypotheses
directly from the available data. Also, IB-based models generate regression or classification
predictions only via specific instances while these models do not adhere to a set of
abstractions. The main disadvantage of IB-based models is that their complexity increases
with data. The most common IB-based algorithms are the k-nearest neighbor [90], vector
quantization [91], locally weighted [92], support vector machines [93] and self — organizing

map [94]. In Figure 3.14 is presented a typical structure of an IB model.

17

Figure 3.14 Instance based model

3.6.11 Natural Language Processing Models
Natural Language Processing (NLP) models are used to provide automatic summarization

of the main points in a given text or document. NLP-based algorithms are also used to
classify text according to predefined categories or classes and are used to organize
information, and in email routing and spam filtering. The most common NLP-based
algorithms are BERT [95] and XLNet [96]. In Figure 3.15 is presented a typical function of
an NLP model.

— Word

Figure 3.15 Natural language processing model

3.6.12 Regression Models
The goal of a regression learning model is to predict an output variable based on known

input variables. The most common regression-based algorithms are linear regression [97],
logistic regression [98], ordinary least squares regression [99], cubist [100] and locally
estimated scatterplot smoothing [101]. In Figure 3.16 is presented a typical structure of a

regression model.

18

Figure 3.16 Regression model

3.6.13 Regularization Models
Regularization models consist of an extension of regression models. The aim of

regularization-based models is through a penalize technique to simplify complex models to
simpler performance models. Common regularization algorithms are ridge regression [102],
least absolute shrinkage and selection operator [103] and least-angle regression [104]. In

Figure 3.17 is presented a typical structure of a regularization model.

@]

Figure 3.17 Regularization model

3.6.14 Speech Recognition Models
Speech recognition (SR) models or voice recognition models are used in speech recognition

technology to convert voice to text. SR-based models work by breaking down the audio of
a speech recording into individual sounds, analyzing each sound, using algorithms to find
the most probable word fit in that language, and transcribing those sounds into text. Most
common SR-based algorithms are ContextNet [105], LiGRU [106] and ResNet [107]. In

Figure 3.18 is presented a typical function of an SR model.

19

[— wore

Figure 3.18 Speech recognition model

3.7 Al History Timeline

As can be observed from the Figure 3.19, the first algorithms were created in 1950 with the
aim of developing simple Al models to solve basic mathematical problems. Moreover, from
1950-1970 an increase in the development of new algorithms can be observed. While from
1980-2000 there is a sharp decline. The main reason was the need to solve increasingly
complex mathematical problems, combined with the lack of computational resources. This
led to a lack of interest in this field of research. While, it is observed that since 2014, the
period in which computing resources have increased, more sophisticated algorithms are
being developed to solve more complex problems, such as computer vision, natural language

processing and speech recognition problems.

Cluster

ContextMet

MLP NNs
2001
1980 2018

CNMNs

1967

2014
1964

2017

2019

Figure 3.19 ML & DL algorithms history timeline

20

Chapter 4 Countermeasures Against Hardware Trojans

4.1 Introduction

As mentioned, HTs can be inserted at any stage and phase of ICs development, can attack at
any unit of the ICs, can affect the ICs via a variety of attacks and can have different physical
layouts. For these reasons in this thesis, we categorized the countermeasures approaches
against HTs in three major categories, SCA-based approaches, ML-based & simulation
approaches and auxiliary approaches (Figure 4.1). SCA-based approaches are categorized
into two subcategories power and time analysis approaches. ML-based and simulation
analysis approaches are also categorized into two subcategories Logic Testing (LT) and ML-
based classification. And the auxiliary approaches are categorized in Runtime Monitoring

(RM) and Prevention-Facilitation (PF) approaches.

o SCA-based Approaches

BRIl L-based and simulation
Approaches

Countermeasures Against HTs

B Auxiliary Approaches

Prevention & Facilitation
Figure 4.1 Categorization of countermeasures approaches against HTs

4.2 Historical Throwback

Historically, the first research attempt that mentioned and studied the existence of HTs in
ICs was presented by Agrawal et al [108] in 2007. The authors have developed the first
detection approach based on SCA-based power analysis. In 2009, Chakraborty et al [109]
developed the first method for HT detection based on LT. In 2012, Salmani et [110] proposed

21

the first PF approach. In 2014 introduced by Bao et al [111] the first ML-based approach for
the post-silicon stage. In 2015, Ngo et al [112] proposed an RM approach. Lastly, in 2016,
the detection of HTs at GLN was proposed by Hasegawa et al [24], while in 2022 we
proposed GAINESIS [113] the first GAN-based approach for the synthesis of new generated
samples for GLN. In Figure 4.2 is presented a history timeline for countermeasures against

HTs.

&

<

Presented a pre-
silicon ML
technique for HTs
classification
based on GLN
analysis features

Developed a post-
silicon ML
approach for HTs
detection based
on RE features

Chakrabarty
developed the first
LT-based approach

against HTs

DL
SCA PF RM
Develaped a pre-
In 2007 developed Develaped the fist Presented a silicon ML & DL
the first method layout-filler runtime technique for HTs
against HTs by approach based on monitoring classification
Agrawal dummy flip-flop technique by Ngo based an GANs
and GLN features

Figure 4.2 History timeline for countermeasures against HT's

4.3 Categorization of Studies

We present twenty-nine approaches in total. Twelve are conference and sixteen are journal

articles referring to a period between 2007 and 2019 (Figure 4.3).

As mentioned, the category of SCA-based approaches consists of two subcategories SCA-
based power analysis and SCA-based time analysis. Specifically, SCA-based power analysis
consists of five approaches, four journals and one conference. While SCA-based time
analysis has only two journal approaches. Next, the category ML-based and Simulation
consists of thirteen approaches. LT simulation subcategory consists of three in total
approaches, two journals and one conference. ML-based subcategory consists of ten in total
approaches two journals and eight conference studies. While the last category consists of

two subcategories RM and PF. RM-based subcategory consists of two journals and one

22

conference study. While the PF subcategory consists of four journals and two conference

methods. (Figure 4.4).

12
43%

16
57%

Journal Conference
Figure 4.3 Categorization of studies

1 0 1 1

Power Analysis Time Analysis Logic Testing Machine Runtime Prevention &
Simulation Learning Based = Monitoring Facilitation

Journal Conference

Figure 4.4 Categorization of studies per sub-categories

4.4 Distribution of the most Contributing Journal Studies

For these studies, it was noted that 50% were developed by academic institutions in the USA.
Japan is in second place, with 13% of the total studies, which are based on ML at the GLN
phase. China and Iran have 10% of the studies each. China is involved in the development

of ML-based studies for the post-silicon stage of ICs. While Iran is dealing with the

23

development of studies for the PF subcategory. Furthermore, France, Austria, Malaysia and

India have 3% each. (Figure 4.5).

Our next step was to present the contribution of the most important journals according to the
examined studies. In total twenty-two journals and conferences were used for the
publishment of the examined studies. 64% of the studies were published at conferences and
36% at journals. From the eight in total journals the most significant journals were the
“Transactions on Information Forensics and Security”, “Transactions on Very Large-Scale
Integration Systems” and “Transactions on Computers” with three published studies each.
Then follows the “Microprocessors and Microsystems” journal with two published studies.
Specifically, “Transactions on Information Forensics and Security” journal published studies
that mainly focused on SCA-based power analysis approaches. While the “Microprocessors

and Microsystems” journal published studies that focused exclusively on PF approaches

(Figure 4.6).

Number of papers
m15

nd
3

ml X

Figure 4.5 Geographical distribution of the contribution of each country to the research

field focusing on countermeasures against HTs viruses.

24

Science direct - Microprocessors and Microsystems [
|IEEE - Embedded Systems Letters [
IEEE - Design Automation Conference (DAC) [T
IEEE - Computer Society Annual Symposium on VLSI... TS

Science direct - Integration 1
|IEEE - European Conference on Circuit Theory and... 1
IEEE - Global Conference on Consumer Electronics... 1
IEEE - International Conference on Computer... 1
IEEE - Asian Hardware-Oriented Security and Trust... 1
IEEE - International Conference on Application-... 1
IEEE - International Symposium on Quality... 1
IEEE - International Conference on ASIC (ASICON) 1
IEEE - International Symposium on Circuits and... 1
IEEE - International Symposium on On-Line Testing... 1
IEEE - Transactions on Computer-Aided Design of... 1 1 1

ACM - Conference on Computer and... 1
Springer - Cryptographic Hardware and Embedded... 1
IEEE - Design & Test 1
IEEE - Transactions on Computers 1

IEEE - Transactions on Very Large Scale Integration... 1 1 I

IEEE - Transactions on Information Forensics and... 2 1

IEEE - Symposium on Security and Privacy (SP) 1

(1] 0.5 1 1.5 2 2.5 3

SCA-based power analysis ™ SCA-based time analysis Logic testing simulation
ML-based Runtime monitoring M Prevention and facilitation

Figure 4.6 Distribution of the international journals and conferences and concerning

applications of studies per sub-categories.

4.5 Studies Trend

In Figure 4.7 we can observe the popularity of each sub category over the years. Specifically,
from 2007 to 2013 most of the studies focused on the development of methods for the
detection of HTs based on SCA power and time analysis. In 2012 the first auxiliary-based
study appears. And the golden era of auxiliary based approaches was 2015 when the majority
of these studies are developed. The first ML-based approach was introduced in 2014. But in
2016 and 2017 there is a sharp increase in the development of such methods. As regards the
LT simulation approaches the first study was presented in 2009 and other such approaches

have been developed over time.

25

2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Power Analysis Time Analysis Machine Learning

Logic Testing Runtime Monitoring H Prevention and Facilitation

Figure 4.7 Countermeasures trend

4.6 SCA-based Approaches

SCA-based approaches aim to secure ICs for the SCA phase of the post-silicon stage of ICs.
These approaches use techniques based on side-channel analysis features and detect changes
of physical characteristics like power and time, caused by HTs. If the original SCA values
of an IC differ, then the circuit is infected. That is caused because when an HTs is partially
or fully activated the original infected circuit exhibit greater switching activity compared to

the original normal circuit.

4.6.1 SCA-based Power Analysis Approaches
The first study which mentioned the existence of HTs was presented in 2007 by Agrawal et

al. [108], and it was an SCA-based approach. Specifically, the authors developed a method
for the detection of large or small in physical layout HTs based on SCA of transient current
characteristics. In a study [114], the authors introduced a method for the detection of HTs
based on SCA of static current characteristics. For multiple places across the 2-D surface of
the chip, they took simultaneous measurements of static current features. The experimental
results showed that this multiple measurement techniques in combination can effectively
detect small HTs. Furthermore, authors in the study [115], proposed an SCA-based method
via a power supply transient signals analysis. To evaluate local power supply transient signal

measurements received from many individual power ports on the chip, a power supply

26

transient analysis technique was applied. The power supply transient signals for each power
port were measured, and the power supply transient of each surrounding power port was
compared. Following that, a signal calibration was used to reduce noise, and a scatter plot
analysis was designed to detect an HT effectively. The final results showed that this
technique was able to detect large physical layout HTs. In 2011 developed by Koushanfar et
al. [116] a unified framework based on SCA leakage power. The authors also combined
calibration and sensitivity analysis techniques for the detection of HTs. This approach was
able to detect with low process overhead large in physical layout HTs. The last SCA-based
on power features approach presented in this book is the study [117]. Specifically, the
authors proposed a multiple-parameter SCA-based approach for the detection of HTs. They
used and combined dynamic current and maximum frequency analysis features for HTs
detection. The results showed that their approach was able to detect varying types and sizes

of HTs. In Table 4.1 is presented a summary of SCA-based power analysis approaches.

Table 4.1 Summary of approaches in SCA-based power analysis

Observed Feature

Authors Features Number Functionality Effectiveness Benchmark Type

Detection of HTs in ICs, based

Transient supply . . : Large and RSA . .
[108] current (IDDT) 1 on 51d<_3-ch_annel 1_nformat10n small HTs Circuit Simulation
analysis via transient current
Quiescent supply Detection of HTs based on the .
(100] current (IDDQ) ! analysis of a chip’s IDDQS Small HTs N/A Experimental
ISCAS 85
Transient supply Detection of HTs via sensitivity L HT Benchmar . .
(101] current (IDDT) ! analysis of power signal arge T8 k Circuit: Simulation
C499
ISCAS 85
Qui]ZSeCIZI};t(:u)];ply Detection of HTs in ICs based E ecriigrllll;r
[102] current (IDDQ), 3 on gate-level characterization Large HTs ~ C8,C499, Simulation
Transient supply and multi-parameter 432
current (IDDT) measurements C1355,
C3450
Transient supply Xilinx
current (IDDT), Detection of HTs, based on Varying types FPGA: Simulation/
[103] Maximum 2 dynamic current and maximum and sizes of . . .
. . Virtex-11 Experimental
operating operating frequency HTs XC2V500

frequency (Fmax)

27

4.6.2 SCA-based Time Analysis Approaches
In 2011 developed by Lamech et al [118] an SCA-based on time analysis features approach.

Specifically, the authors combined SCA delay and power features for the detection of HTs.
The experimental results showed that their method was able to detect large and small in size
HTs. In 2013 Xiao et al. [119] developed an approach based on clock sweeping and SCA
delay characteristics. They used a combination of path delay fault patterns with clock
sweeping transition technique for the detection of HTs in a circuit. The results showed that
their method could detect small in size HTs. In Table 4.2 is presented a summary of SCA-

based time analysis approaches.

Table 4.2 Summary of approaches in SCA-based time analysis

Observed Feature . . .
Authors Functionality Effectiveness Benchmark Type
Features Number
Detection of HTs,
Power, based on the Xilinx FPGA Circuit: .
[103] 2 . Large and small HTs . Experimental
Delay (T) analysis of power Virtex XUP-V2Pro
and delay
Detection of HTs
Transition, based on clock ISCAS 89: Simulation/
[119] 2 . Small HTs .
Delay (T) sweeping and delay- S38417 Experimental

based detection

4.6.3 SCA-based Approaches Conclusions
Power analysis approaches constitute 71% of the total approaches in the SCA-based

category. While the time analysis approaches 29% (Figure 4.8). As regards the benchmark,
ISCAS 85 and custom circuits were the most used for power analysis approaches while
ISCAS 89 and custom circuits for time analysis approaches (Figure 4.9). Finally, as far as
features were concerned, the most used features for power analysis approaches were the
quiescent and transient supply current and the delay for time analysis approaches (Figure

4.10).

28

= Power Analysis = Time Analysis
Figure 4.8 Number of studies in SCA-based approaches category

ISCAS 89

Custom circuit

ISCAS 85

NA

>

0.5 1 1.5 2 2.5 3 3.5

= Power Analysis = Time Analysis

Figure 4.9 Benchmark in SCA-based approaches category

29

Delay 2

Quiescent supply current 2

Transient supply current 3

0 0.5 1 1.5 2 2.5 3 3.5

Power Analysis Time Analysis

Figure 4.10 Features types in SCA-based approaches category

4.7 ML and Simulation based Approaches

ML approaches aim to handle HTs based on classification. These types of approaches
developed ML-based classifiers for the classification of HTs in different phases of ICs
development. On the other simulation-based approaches like logic testing techniques aim to
generate tests that activate HTs and propagate the HTs payload to primary outputs for
comparison with the golden circuit. The challenge with these techniques is to generate
efficient tests to activate HTs. In this section, are presented ML and simulation-based

approaches as countermeasures against HTs.

4.7.1 Logic Testing Simulation Approaches
As mentioned, LT simulation approaches aim to generate effective tests in order to be able

to activate and discover the stealthy nature of HTs. Due to the stealthy nature of HTs it is
difficult to distinguished an infected circuit. Random generated tests are not efficient for this
reason the LT-based simulation approaches aim to generate guided tests for the activation
and detection of HTs. In 2009 Chakraborty et al. [109] proposed an approach based on LT
simulation as a countermeasure against HTs. Specifically, they developed an LT approach
named MERO. This approach generated test patterns based on multiple excitations of rare
logic conditions at internal nodes. The simulation results showed that this approach was able
to detect small in size HTs. In 2011 Waksman et al. [120] developed an LT-based framework
named FANCI. They used Boolean functional analysis features to generate test patterns for
HTs activation. The results showed that this approach was able to detect infected circuits

with a low false positive rate. In the last study [121], the authors developed an LT-based

30

simulation technique named VeriTrust for the detection of HTs at the design phase based on
HTs trigger inputs. VeriTrust technique consisted of a traced and a checker. The tracer parsed
verification tests to identify trigger signals containing inactive entries while the checker
examined these signals to determine which are associated with HTs. The results showed that
this approach was able to detect different types and sizes of HTs. In Table 4.3 is presented a

summary of LT simulation approaches.

Table 4.3 Summary of LT simulation approaches.

Auth Observed Feature Functionalit Effecti Benchmark T
uthors Features Number unctionality ectiveness enchmar ype
Detection of HTs ISCAS 85:
based on test pattern C2670, C3540, C5315,
[109] Nodes 1 generangn qnd Small HTs C6288, C7552 Simulation
multiple excitations of
rare logic conditions at ISCAS 89:
internal nodes S13207, S15850, S35932
Detection of HTs
. ISCAS 89: . .
[120] Wires 1 basefl on Booleap HTs and IPs S15850, $35932, 38417 Simulation
functional analysis
ISCAS 89:
Identification of HTs . S15850, S35932, S38417,
at the design sta Ditferent $38584
[121] Netlists 1 ¢ £n stage, types and Simulation

based on the detection sizes of HTs
of trigger inputs Microcontrollers:
MC8051, LEON3

4.7.2 ML-based Approaches
ML-based approaches aim to detect the existence of HTs in a circuit. In these approaches

are developed models which can classify infected from normal circuits or to use as reverse
engineering or side-channel analysis methods for the detection of HTs in a circuit.
Specifically, for the pre-silicon stage proposed ML-based classifiers for the classification of
infected and normal circuits at different pre-silicon phases. While ML-based methods that
work as reverse engineering techniques and ML-based methods trained via side channel

analysis features were developed for the detection of HTs at the post-silicon stage.

For the pre-silicon phase in 2016, Hasewaga et al. [24] proposed an SVM-based model for
the classification of infected from normal circuits. Specifically, the authors developed an
SVM-based model for the classification of HTs at the GLN phase of the pre-silicon stage.

For the training of the model was used a data set consisting of GLN-based features like nets

31

and gates of the circuits. The results showed that this approach was able to classify
effectively the infected with HTs from normal nets. The same group [25] 2017 proposed
another ML-based model. They developed an RF-based model which was trained via GLN-
based area features, like number of flip-flops and multiplexors before and after for each net.
The results showed that the RF-based model was effective for the classification of the two
classes. In 2018 Inoue et al. [26] proposed an SVM-based model in a combination with GLN-
based area features for the classification of HTs at the GLN phase of the pre-silicon stage of
ICs development. The SVM-based model was trained via area features like the number of
logic gates and flip-flops for each net of the infected and normal circuits. The final results
proved the validity of the method. In the study [27], the authors developed six ML-based
models for the classification of HTs at the GLN phase. Specifically, they developed and
compared six ML-based models which were trained via a dataset consisting of GLN-based
area, power, and time analysis features from infected and normal circuits. The features
consisted of area features like the number of cells, nets, ports, and power features like the
number of total switching and combinational power of each normal and infected circuits.
The experimental results showed that their GB-based model was able to classify effectively

the normal from HTs circuits.

As mentioned, also ML-based approaches were developed for the detection of HTs at the
post-silicon stage. So, for the post-silicon phase in 2014 Bao et al. [111] developed an ML-
based model as a reverse engineering approach for the detection of HTs. Specifically, they
trained an SVM classifier based on high resolution images features from golden and infected
with HTs circuits layouts. The simulation results showed that the SVM-based classifier was
able to classify the two classes efficiently. The same group in the study [122] proposed a
KMeans-based clustering model. The KMeans-based model has developed again via high
resolution image features from golden circuits and of three types of modifications based on
the golden circuits which consisted of the infected circuits. Another post-silicon detection
approach was developed in 2016 by Jap et al. [123]. Specifically, the authors developed an
SVM-based model for the detection of HTs. The model was trained from a data set consisting
of SCA-based time features like leakage from normal and infected circuits. Another study
with ML and SCA techniques was proposed by Xue et al. [124]. In this study, the authors
developed an SVM-based model for the detection of HT's at the post-silicon stage. The model
was trained via a data set that consisted of SCA-based power features and specifically

transient power supply features of normal and infected circuits. The experimental results

32

showed that this method was able to detect with effectiveness the infective from normal
circuits. Wang et al. [125] proposed another SCA-based method in combination with ML
techniques for the detection of HTs at the post-silicon phase. Specifically, they developed
an ELM-based model which was trained from a data set consisting of dynamic power
features from infected and normal circuits. In the study [126], the authors developed an
SVM-based model for the detection of HTs via SCA power features. Specifically, they
developed an SVM-based model which was trained via a data set consisting of SCA-based
power consumption waveforms features from infected and normal circuits and given. The
experimental results proved the validity of the method. Liu et al. [127] proposed another
SCA-based in combination with an ML-based model approach for the detection of HTs at
the post-silicon phase. They developed an SVM-based model which was trained via SCA
wireless transmission power waveform features from HTs free and infected circuits. The
results showed that their method was able to detect effectively wireless transmissions power

signals produced from HTs. In Table 4.4 is presented a summary of ML-based approaches.

Table 4.4 Summary of ML-based approaches

Observed Feature Positive Models/

Negative

Authors feature number data data Benchmark Algorithms Results
Features extracted Trust-HUB:
o
[24] level netlists, like 5 Trojan Normal > > SVM N
LGFi, FFi, FFo Nets Nets S$35932-T300, S38417-T100, 100% TPR
Pl and i’O ’ S38417-T300, S38584-T100,
S38584-T300
Trust-HUB:
RS232-T1000, RS232-T1200,
Features extracted 429 54.782 RS232-T1300, RS232-T1400, 74.6% F-
[25] from gate-level 11 Normal Normal RS232-T1500, S15850-T100, EL/RF measure
netlists, Nets Nets S35932-T100, S35932-T300,
S38417-T100, S38417-T200,
S38417-T300, S38584-T100
Type A:
58.9%
accuracy
Features extracted Trust-HUB:
ff(fm s, Tike 248 1991 RS232-T1000, RS232-T1100, Type B:
[26] LGFi. FFi I;Fo 5 Trojan Normal ~ RS232-T1200, RS232-T1300, SVM 69.5%
PI’an d i’O ’ nets nets RS232-T1400, RS232-T1500, accuracy
RS232-T1600
Type C:
65.1%
accuracy

33

Features from
area, power and
[27] time analysis
through DC
compiler tool

High resolution
images from ICs
golden layouts

(111

Trojan Free ICs
golden layout
images and 3

types of
modifications
produced based
on these images,
Trojan Addition,
deletion and
parametric

[122]

Features extracted
from side-channel
analysis to
leakage of the
chip based on
time samples

[123]

Features extracted
from the transient
power supply
currents (IDDT)
of each simulated
IC and a Trojan-
free or Trojan-
inserted indicator

[124]

11

160x160
pixels

160x160
pixels

501

892

500
Trojan
Addition

500
Trojan
Deletion

500
Trojan
Parametric

500
Trojan
Addition

500
Trojan
Deletion

500

Trojan
Parametric

N/A

50 Trojan
Infected

500
Trojan
Free

500
Trojan
Free

75.000
Time
samples

50
Trojan
Free

Trust-HUB: All- Benchmarks

Custom

ISCAS 89:
S27, 5298, S280, S15850,
538417

ITC 99:
B18

Custom

ISCAS 89:
S27, 8298, 8280, S15850,
S38417

ITC 99:
B18

Xilinx FPGA Circuit:
Spartan-6

ISCAS 89:
S38417, S35932

GB

SVM

Clustering/
K-Means

SVM

SVM

100% F1-
score

90%
accuracy

Trojan-
Free:
99.23%
accuracy

Trojan-
Addition:
100%
accuracy

Trojan-
Deletion:
100%
accuracy

Trojan-
Parametric:
98.86%
accuracy

N/A

Trojan-
inserted
ICs known:
100%
accuracy

Trojan-
inserted
1Cs
unknown:
98%
accuracy

34

Features from

converted power 72.72%
[125] consumption N/A N/A N/A N/A SVM acc.uraco
waveform into the Y

frequency domain

Features from
side-channel

0,
[126] analysis, dynamic ~ N/A N/A N/A N/A ANN/ELM 90%
success rate
power
consumption

Trojan-Free:

Features consist TSMC Microcontroller:
of transmission 0.35-um technology
power .
measurements for 40. Trojan Trojan-I and Trojan-11:
. I infected 30 . 0/10 FP
six ciphertext - Created two HTs, which leak
[127] 6 Trojan . SVM and 0/80
blocks . the secret key of a wireless
. 40 Trojan- Free . P FN
transmitted by I infected cryptographic IC consisting
each of 40 of an Advanced Encryption
Trojan-free Standard (AES) core and an
circuits ultra-wideband (UWB)

transmitter (TX).

4.7.3 ML and Simulation based Approaches Conclusions
ML-based approaches constitute 77% of the total approaches in the ML and Simulation

category. While the LT simulation approaches 23% (Figure 4.11). As regards the
benchmark, Trust-HUB and ISCAS 89 were the most used for ML-based approaches while
ISCAS 89 and ISCAS 85 for LT simulation approaches (Figure 4.12). Finally, as far as
features were concerned, the most used features for ML-based approaches were netlists as
well as high resolution images and dynamic power. While for LT simulation approaches

were netlists, wire and nodes features (Figure 4.13).

35

= Logic Testing Simulation = ML-based
Figure 4.11 Number of studies in ML and Simulation based approaches category

NA 2
Custom circuit _
ITcos T2
Trust-HUB (0000
ISCAS 89 [A
ISCASS85 = 1
0 1 2 3 4 5 6 7

= Logic Testing Simulation = ML-based

Figure 4.12 Benchmark in ML and Simulation based approaches category

Frequency 1

Dynamic power 7)
Transient supply current (IDDT) 1
Delay 1
High resolution images 2
Netlists 1 3
Wires 1
Nodes 1

0 05 1 15 2 25 3 35 4 45

Logic Testing Simulation ML-based

Figure 4.13 Features types in ML and simulation-based approaches category.

4.8 Auxiliary Approaches

The auxiliary approaches aim to enhance the effectiveness of the detection techniques
against HTs for the pre-silicon or post-silicon stage. Auxiliary approaches can be categorized
into two categories, the runtime monitoring approaches and the prevention-facilitation

approaches.

Runtime monitoring approaches aim to reduce the catastrophic effects of HTs when these
viruses are activated. Specifically, these approaches focus on identifying putatively
undetectable attacks and their effects from time-delayed HT activation. These studies can
develop techniques that can probe the behavior of signals of interest using finite state
machines or can generate and run multiple functionally equivalent tests to detect HT attacks.
Furthermore, these studies can find similar HTs, due to their parallel execution on the circuit
or to bypass HTs, imitating software HTs. Also, runtime monitoring approaches can detect
unused circuitry and label it as suspicious using verification tests. Subsequently, suspicious
circuitry is replaced with a software logic exception which allows the normal performance

of the system to bypass the HTs.

On the other, prevention-facilitation approaches aim to increase the difficulty for HT
insertion into ICs, mainly during the design phase, or facilitate the detection approaches.
Prevention-facilitation approaches use hardware security techniques like obfuscation,
layout-filler, path-delay fingerprinting to enhance the detection of HTs. The obfuscation

technique changes the transition mode of the circuit providing the ability to operate in two

37

different modes; normal and obfuscated. The normal mode produces the desired output for
the circuit, while the obfuscated allows the circuit to malfunction in some of the input
patterns. The use of this technique makes the insertion of a malicious circuit into a system
more difficult. Layout-filler techniques are used to fill the empty spaces of a circuit with
filler cells to prevent the insertion of additional components. However, these techniques
cannot prevent the malicious conversion of a transistor set or the addition of a circuit that
does not require additional layout space. Another way to detect HTs is based on synthesis
algorithms based on path-delay fingerprints. These techniques improve the HTs detection

probability by minimizing the maximum delay shortest path of the circuits.

4.8.1 Runtime Monitoring Approaches
In 2015 Ngo et al. [112] developed a runtime monitoring approach for the detection of HTs.

Specifically, they developed an assertion approach for identifying and validating high-level
important behavioral invariants through an integrated on the circuit, hardware property
checker. The results showed that this approach could detect HTs in circuits with varying
system overhead and modify the protection levels correspondingly. In the study [128], the
authors developed a general methodology based on runtime monitors for the identification
and detection of HTs attacks through burst mode communication. Specifically, they designed
a runtime monitor approach based on the analysis of vulnerable paths. The statistical and
experimental analysis showed that this technique had low area and power overhead
compared to other monitor approaches and could easily be used without requiring extra
information of IP modules. Furthermore, authors in the study [129], developed three low-
overhead runtime approaches based on power/thermal features of infected and normal
circuits for the detection of HTs. The first approach was a sensor-based approach based on
thermal features extracted from the thermal sensors. In the second approach was used a filter
known as the Kalman filter for the tracking of circuits thermal profiles. The third approach
combined the Kalman filter with leakage power features of the circuits to track the thermal
profiles. The simulation results verified that all the approaches were able to detect HTs

effectively. In Table 4.5 is presented the summary of RM approaches.

Table 4.5 Summary of RM approaches

Observed Feature -
Authors Features Number Functionality Benchmark Type

38

Features

Critipal number adapt Conﬁgu?able Microcontroller Circuit: . .
[112] behavioral . Security Simulation
. . according to . LEON3
invariants the circuit Monitor
Trust-HUB:

Handshaking

Features
number adapt

Configurable

AES-T100, AES-T1000, AES-T1100,
AES-T1200, AES-T1300, AES-T1400,

[128] protocol according to Security AES-T1500, AES-T200, AES-T2000, Experimental
features the circuit Monitor AES-T2100, AES-T300, AES-T400,
AES-T500, AES-T600, AES-T700,
AES-T800, AES-T900
Variant- Trust-HUB:
Thermal and Based AES-T1700, BasicRSA-T200, MC8051- . .
[129] power profiles 2 Paralle] T300, MC8051-T400, MC8051-T600), Simulation
Execution RS232-T400, RS232-T900, S38417-

T300, PIC16F84-T100, PIC16F84-T200

4.8.2 Prevention & Facilitation Approaches
An obfuscation-based technique was developed by Kamali et al. [130]. The authors

developed an obfuscation-based method via embedded key features for the protection of ICs
against HTs attacks. The simulation results showed that their method could defend ICs
effectively. The same group in the study [131] proposed again an obfuscation-based method
for the defense of [P-piracy and reverse engineering approaches via the replacement of parts
of logic design with programmable logic routing blocks. In 2012 Salmani et al. [110]
developed an improving HTs detection technique based on analysis of the transition
generation time and dummy flip-flop insertion. Specifically, the authors developed a method
based on dummy multiplexors to be able to remove rare trigger conditions, reduce the
transition generation time, and increase the activity of HTs for the detection of HTs. In the
study [132], the authors proposed a layout-filler based on a dummy circuit insertion
technique against HT's attacks. This technique is identified and replaced the unused resources
of a circuit with dummy logic cells. Experimental results showed that the proposed study
was effective for Field Programmable Gate Arrays (FPGAs) with no cost on power or
performance. In 2014 Nejat et al. [133] developed an approach for improving HT detection
based on path-delay fingerprinting and an effective test-vector selection scheme. The
fundamental idea behind this method was to test the circuit at the appropriate frequencies.
Each path was examined at a clock cycle with a period equal to the path's delay. The results
showed that this method improves the detection of HTs with low area overhead. The same

group in the study [134], developed a path-delay fingerprinting-based method for the

39

detection of HTs. Specifically, they developed a logic-level synthesis retiming algorithm
that shortened for each node of a circuit the connection paths to minimize the communication
delay. The results showed that the shorted paths improve the detection of HTs. In Table 4.6

is presented the summary of PF approaches.

Table 4.6 Summary of PF approaches

Observed Feature . .
Authors Features Number Functionality Benchmark Type
Several ISCAS 85:
[130] embedded key 1 Obfuscation C2670, C3540, C5315, C62388, Simulation
numbers C7552
Fully ISCAS 85:
programmable . (C432, C499, C880, C1355, . .
31 0gic and routing 2 Obfuscation C1908, C2670, C3540, C5315, ~ Simulation
blocks C7552
Features based on
average clock - . ISCAS 89: . .
[110] cycles per 1 Dummy Circuit Insertion $38417 Simulation
transition
Low-level e .
[132] dummy logics N/A Layout Filler Xllmx\l;il;giglrcmt' Experimental
(LLDLs)
Features based on bair;g) ;(;lve;?ﬁi;;g Hgndztecrtilggn ISCAS 89:
[133] path-delay 1 patn-deray Ingerprinting - g7)3 51423, $5378, S13207, Experimental
o and an effective test-vector
fingerprinting . 535932
selection scheme
Enhance HTs detection based on
Features based on the improvement of the path-delay ISCAS 89: Simulation/
[134] path-delay 1 fingerprinting technique via a S208, S344, S1196, S1238, Experimental
fingerprinting logic-level synthesis retiming S1494, 59234, S13207, S38417 P

algorithm

4.8.3 Auxiliary Approaches Conclusions
PF approaches constitute 67% of the total approaches in the Auxiliary category. While the

RM approaches 33% (Figure 4.14). As regards the benchmark, Trust-HUB and custom
circuits were the most used for PF approaches, while ISCAS 89 and ISCAS 85 for RM
approaches (Figure 4.15). Finally, the most used feature for PF approaches was the delay.
While for RM approaches the most used features were thermal power, handshaking protocol

and behavioral invariants features (Figure 4.16).

40

' 3
33%

* Runtime monitoring = Prevention and facilitation
Figure 4.14 Number of studies in Auxiliary based approaches category

ISCAS 85

Trust-HUB 2

0 0.5 1 1.5 2 2.5 3 3.5

Runtime monitoring M Prevention and facilitation

Figure 4.15 Benchmark in Auxiliary based approaches category

Delay

Low level dummy logics
Clock cycles

Logic and routing blocks
Embended keys
Thermal power

Handshaking protocol

Behavioral invariants

(]

0.5

=Y

1.5 2 2.5

Runtime monitoring = Prevention and facilitation

Figure 4.16 Features types in Auxiliary based approaches category

4.9 Countermeasures Against Hardware Trojans Conclusions

Since 2007, HT detection techniques have emerged as necessary tools for maintaining the
reliable, secure and highly stable operation of virtually every available IC type. Depending
on the underlying mechanism, the functionality and the manufacturing phase at which an HT
detection method operates, we have grouped available techniques in three categories. Each
category was further subdivided depending on specific functionalities related to the detection
process. SCA-based approaches consist 24% (7 out of 29) of the total examined approaches.
On the other, ML-based and simulation approaches consist 45% (13 out of 29) of the total
approaches while the Auxiliary approaches consist of the remaining 31% (9 out of 29)

(Figure 4.17).

As regards the benchmark, ISCAS 89 was the most frequently utilized benchmark with 34%
(10 out of 29) of the total amount of studies. ISCAS 89 is especially used from ML-based,
LT simulation and PF approaches. The next most used benchmark was the custom circuits
with 24% (7 out of 29) and used especially for SCA-based power analysis and ML-based
approaches. While the next most used benchmark was ISCAS 85 and Trust-HUB with 17%
(5 out of 29) respectively. ISCAS 85 is mostly used for SCA-based power analysis and
auxiliary PF approaches and Trust-HUB from RM and ML-based approaches (Figure 4.18).

Depending on the mode of operation and functionality, HT detection studies relied on a wide
spectrum of features for training their models or extracting decision making rules. Delay,

netlist and transient supply current were the most frequently used features. Specifically, the

42

delay was the most frequently used feature with 17% (5 out of 29) and was used mostly for
SCA-based time analysis and PF approaches. While netlist and transient supply current were
the next most used features with 14% (4 out of 29) respectively. Netlists are used exclusively
for ML-based approaches and transient supply current for SCA-based power analysis
approaches. The remaining studies depended on high-resolution imaging, dynamic and

quiescent supply current power (Figure 4.19).

ne Learning & simulation
Approaches

Machi

Figure 4.17 Number of studies for all the categories

43

NA 1

ITC 99 2
ISCAS 89
ISCAS 85 2
Custom circuit 2
Trust-HUB 2
0

2

SCA-based power analysis

= Prevention and facilitation = Logic testing simulation

1 e
R

4

SCA-based time analysis

6

8

10

Runtime monitoring

ML-based

Figure 4.18 Benchmark for each countermeasure category

Frequency

Dynamic power

High resolution images
Netlists

Wires

Nodes

Quiescent supply current
Transient supply current
Delay

Low level dummy logics
Clock cycles

Logic and routing blocks
Embended keys

Thermal power
Handshaking protocol
Behavioral invariants

(=]

N N NN

p—

SCA-based power analysis

= Prevention and facilitation = Logic testing simulation

2

3

SCA-based time analysis

4

Runtime monitoring

ML-based

Figure 4.19 Features types for each countermeasure category

44

12

Chapter S GAINESIS: Generative Artificial Intelligence NEtlists
SynthesIS

5.1 Introduction

In this chapter, we present our methodology. We list the steps needed to create an ML-based
model as well as we mention the importance of the data set and the features. We present with

details our scheme and finally, we analyse each step of our scheme in detail.

Must be mentioned that developing a model based on the principles of ML or DL is a costly
process in both time and computing power. Depending on the problem, the size of the data
set, the size, type and quantity of features contained in the data set as well as the algorithms,
and the set of parameters that will be used and combined for the development of the new
ML or DL-based model, time and computing power can vary significantly from model to
model. Until today, ML-based models need significantly more time for training and testing
than DL-based models. The reason is that ML-based algorithms for the development of a
model are built to use the Computer Process Unit (CPU) and not the Graphic Process Unit
(GPU). On the other, DL-based algorithms can use either CPU or GPU for the training and
evaluation of the development model. In Figure 5.1 we present the steps for the development

of an ML or DL-based model.

The development of GAINESIS was based on Python v3.6 [135] and all benchmarks were
performed on an Intel X-Series 17-7740X computer system equipped with the NVIDIA GTX
1060 GPU. Tensorflow-GPU v1.3 [136], Keras v2.0 [137], Scikit-learn [138], the XGBoost
library [139] and Jupyter Notebook [140] environment was used to develop all the tested
GAN and ML models.

45

Collect, Clean & Evaluate
Prepare Dataset Model

Choose Algorithm
& Train Model

Figure 5.1 Steps for the development of an ML or DL-based model

5.2 Scheme of GAINESIS Methodology

Initially, all circuit benchmarks in Verilog format (1) were downloaded from the Trust-HUB
repository. Design Compiler NXT and the FreePDK45nm open cell library were used to
design the GLN phase of the circuits, a process also known as GLN synthesis (2).
Subsequently, in-house scripts were developed to generate and extract area, power and time
analysis features for each of the designed GLN benchmarks (3). The initial real data set
consisted of 880 samples, 18 TF and 862 TI, and the features utilized (N = 11) were number
of ports, number of nets, number of cells, number of sequential cells, number of references
(number of multiplexers and number of gates), net switching power, total dynamic power,
combinational switching power, combinational total power, total switching power and total
power (4). For the development of our initial real-data-based data set classifier we split our
initial real data set into two sets, a training (80%, 704 samples) and a test (20%, 176 samples)
set (5 and 6). The training of the seven ML-based classifiers was implemented based on the
training set. Specifically, the seven models are based on seven algorithms, GB [82], k-nearest
neighbors (KNN) [90], logistic regression (LR) [98], multilayer perceptron (MLP) [41], RF
[83], SVM [93] and XGB [139]. It is worth mentioning that XGB was used for the first time
for the classification of HTs at the GLN phase. For the development of each classifier, we
used and combined a variety of hyperparameters to optimize each classifier (7). For our
initial real data set we selected the best-performing classifier based on Precision, Sensitivity,

Specificity and F1-score metrics (8), which was a GB-based classifier (9).

Next, we explored our real training data set and found that TI circuits have a larger area and
consume more power compared with TF circuits (10). From the exploration of our real data

set, it became evident that the Trust-HUB initial real data set is highly imbalanced. We

46

postulated that GANs can be used to remedy this problem and provide arbitrary numbers of
synthetic TF and TI feature vectors for training robust ML classifiers. Four GAN models
were developed based on the vanilla GAN [84], CGAN [85], WGAN [86], and WCGAN
[87] algorithms. After the training of our four models, we optimized and evaluated them
(11), and we picked the models with the best and the worst performances (12 and 13). Next,
we synthesized new generated data sets based on our best and our worst-performing models
(14 and 15). We combined the new generated data sets from our best and worst models with

the initial real training data set to produce our mixed data sets (16 and 17).

Furthermore, we used all of the new data sets for the development and comparison of our
new GB-based classifiers (18). For the development of the new GB-based classifiers, each
of the data sets was split into two sets, a test (20%) set and a training (80%) set (19 and 20).
Again, the training of the new GB-based classifiers was implemented based on the training
sets (21) and their evaluation was implemented based on the test sets. We selected as the
new improvement GB-based classifier the best-performing classifier based on Precision,
Sensitivity, Specificity and F1-score metrics (22), which was the GB-WCGAN-Mixed-600-
based classifier (23).

Our next step was to compare our initial real GB-based classifier with our new best GB-
WCGAN-Mixed-600-based classifier. Thus, we evaluated our GB-WCGAN-Mixed-600-
based classifier with our initial real test set (24). Finally, our last step was to compare our
best GB-WCGAN-Mixed-600 classifier with existing methods (25). Our scheme is
illustrated in Figure 5.2. It needs to be mentioned that for the development of ML-based
models, we used a 10-fold cross-validation process, which was repeated 50 times on each
training set. The performance of the algorithms on the test set was implemented using a score

cutoff of 0.5.

47

Verilogin Form

Benchmarks Benchmark Extraction of Initial Real Training Development of Qur [nitial
from Trust-Hub Synthesis (o GLN GLN Features Dataset Creation Sct ML-based Classifier
- o o —
Dataset based raining and optimization
are: of our models
Design Ata, POWEL o arey, 80% % !
Compiler NXT and lime power and GB | Ll:\\ﬁlll-lx \[RBl [KNN
Software from analysis 'f""c al\fﬂyé;l; 5 i
Synopsys features calures, — - —_— e
e features in Jost Sct Evaluation ;
tomal Rest-perfarmed classificr GB-Real-380 |
I
[mitial Real Development of 77 WCGAN-based Madel New WCGAN-based Model Mixed
Training Set Our Generative Best Performed B Generated Datasels Datasets
Exploration Madels Madel | - —
! @ Three different in size (200, 400, @ Combimation of our Lhree

| datasets based on our
hest performed madel with the
imitial real datascl

0 Training — @

cvaluation and

optimization of
our madels

GAN | CGAN
| WGAN

WCOGAN @

WOGAN-based model 600) generated datasets based on

Oceurred that WCGAN model

Tl circuits
have larger
area and
consume more
pawer from TF

Combination of cur three
generated datasets based on our
worst performed model with the

Three different in size (200, 4(4),

GAN-based madel 600) generated datascts based on

"
1
h
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
I
/

|
GAN model Ao
Worst Performed | @ 0 inilial real datascl
Model Y GAN-based Model New GAN-based Model Mixed
AN Generated Datascts Datasets
Twelve New Training Development of Our New B ek N
Datuscts Sel GB-based Classifiers B Final Kvaluation Al
i
@ WCGAN-200 | @ @ Training and optimization H @ Evaluation of our GB-WCGAN-Mixed-
400 | 600, GAN- of our new GB-bused H 600 classilicr 1 initinl Real-S20 105l sel
200 | 400 | 6H), RO%, models via our new ! and comparison with the (iB-Real-880 ‘
WCGAN- generaied and mixed '.\ classitier J
Mixed-200 | 400 datasets | vmmmemmmmmmmmmmmmmm oo P BT
| 600 & Tesl Sel LTt e b WL LR LR ' @ Final Comparison
GANMixed-200 ' | 5 i N P E
400|600 GB-WCGAN-Mixed-600 | 3 Comparizon with existing GLN ML-based
I 1 methods
;

integrated circuits at gate-level netlist phase against hardware Trojans, GAINESIS.

5.3 Data set

Every year more and more ML/DL-based approaches are developed as countermeasures
against HTs. These approaches are aimed at classifying or detecting infected with HTs
circuits from normal uninfected circuits. Also, some approaches are used to enhance the
classification or detection methods. So, the development of these types of approaches needs
a quality data set that will contain a sufficient number of quality samples and features to be

able to train the ML/DL-based model more efficiently.

The data set can be divided into three categories, structured, unstructured and semi-
structured. Structured data is data that follows a pre-defined data model and is thus easy to
analyze. Structured data is presented in a tabular format, including relationships between
rows and columns. Excel files and SQL databases are common examples of structured data.
Each of them has sortable organized rows and columns. Unstructured data is information
that lacks a predefined data model or is not organized in a specific way. Common examples
of unstructured data include text, image, video or audio files. Semi-structured data is a type
of structured data that does not follow the rules of structured data. However, tags or other
markers are used to distinguish semantic pieces and enforce hierarchies of records and fields

inside the data. Examples of semi-structured data include JSON and XML files.

48

As mentioned, the data set plays a significant role in the development of a robust ML- or
DL-based model. Specifically, the data set before being used for the development of a model,
must be cleared from unnecessary values and organised. For example, the data set must be
checked for consistency, cleared of zeros and/or unspecified values, and labeled where
needed. An unreliable data set like a data set with imbalanced samples per class leads to the
development of unreliable models. A type of unreliable model is a model that was learned
to over-classify a class compared with another class. Due to the lack of samples for a class,

the model has learned to under-classify this class compared with the other one.

Must be mentioned that each sample or feature represents a measurable piece of data that
can be used for analysis. The features which are included in a data set can vary widely
depending on the problem which is analyzed. Features are the basic building blocks of the
data set. The quality of the features in a data set has a major impact on the quality of the
insights which will be gained during the development of the model. For the development of
a model, the developer must understand the goals of the project and select the values of the
appropriate features for the training of the model. There are various techniques for improving
the quality of a data set features like feature selection and featuring engineering. These
techniques require extensive user experience for proper application. For the creation of the
model the features which will be used must be scaled. Scale methods transform features by
scaling each feature to a given range. The most common scale methods are standard and
min-max scale methods. Standard scaler assumes data is normally distributed within each
feature and scales them such that the distribution is centered around 0, with a standard
deviation of 1. Centering and scaling happen independently on each feature by computing
the relevant statistics on the samples in the training set. On the other, the min-max scaler
scales and translates each feature individually such that it is in the given range on the training
set, e.g., between zero and one. This scaler shrinks the data within the range of -1 to 1 if
there are negative values. We can set the range like [0,1] or [0,5] or [-1,1]. Below are
presented data sets that were built and used for the training of models as countermeasures

against HTs.

5.3.1 Initial Data Set Development
As mentioned, the process of data set development is the most critical step for the

development of a robust ML model. In this instance, the data set should consist of circuits
with diverse types, sizes and HT functions. We developed our data set by analyzing all

benchmarks accessible in the Trust-HUB benchmark library, but we were not able to meet

49

all the requirements of diversity in size and function through the lack of diversity in terms
of the size and function of Trust-HUB benchmarks. Our first step was to design, with the
Design Compiler NXT tool and FreePDK45nm circuit library [141], the TF and TI circuit
benchmarks of Trust-HUB, which were in Verilog form. Next, with custom scripts we
extracted area, power and time features from the design analysis produced from the Compiler
NXT tool. The initial extracted features were 51 in number, but many produced zero or not
available feature values. So, we cleaned our data set of these features and prepared it for the
development of our method. As a result, our data set consisted of 11 features: five area and
six power analysis features (Table 5.1). Specifically, the five area features were the number
of ports, nets, cells, and sequential cells, as well as the number of gates and multiplexers, or
according to the Design Compiler NXT the number of references, which is how we report it
in this thesis. The six power features were the net switching power, combinational switching
power, total switching power, total dynamic power, combinational total power, and total
power of each designed circuit. So, our initial real data set consisted of a total of 880
designed circuits. From the 880 circuits, 18 were normal or TF circuits which consisted of
positive samples with a class label equal to one (label = 1). The 862 were modified normal
circuits infected with HTs or TI, which consisted of negative samples with a class label equal
to zero (label = 0). It must be mentioned that we named our initial real data set the REAL-
880 data set. So, our initial REAL-880 data set consisted of a total of 880 designed samples.
From the 880 samples, 18 were TF and 862 were TI. For the training, we used 704 samples,
14 TF and 690 TI (80%), and for the evaluation 176 samples, 4 TF and 172 TI (20%).

Table 5.1 Table with our eleven area and power analysis features

Analysis Feature

Number of ports
Number of nets
Area Number of cells
Number of sequential cells
Number of references
Net switching power
Total dynamic power
Combinational switching power
Power o
Combinational total power
Total switching power

Total power

50

5.4 Machine Learning Classifiers Development

The next step for the development of an ML-based model includes the selection of a suitable
ML-based algorithm for the training of our model. For the development of an ML-based
model, there is often more than one algorithm that can be used. The type of problem for
which we aim to build our model is the most important criterion for selecting the most
suitable algorithm for its development. According to this criterion, we can choose more than
one algorithm which is indicated as a solution for our problem. Another criterion consists of
the structure of the data set which will be used for the training and evaluation of the model.
According to the features of the data set maybe we need to choose other types of algorithms.
Also, it is significant to know the complexity and the speed of each algorithm, because each
algorithm needs specific computing power, according to the parameters uses for the
development of a model. There is a case that we cannot build our model due to lack of
computer power. Must be mentioned that choosing more complex algorithms does not

necessarily mean that it will achieve maximum results.

The process of training a model is the most important step of ML methodology because
according to this step we produce our final ML-based model. Each training step consists of
updating the weights and the biases. Training a model simply means learning/determining
good values for all the weights and biases based on our data set samples. A model can be
created based on labeled data samples in supervised learning and trying to leak inferences
from not labeled data in unsupervised ML. For the training to be used a set of
hyperparameters needs to update the weights to have better results from cycle to cycle. So,
as the number of training steps grows then we can get more accurate results. However, before
getting into the training process we should tweak the parameters of the model and experiment

with the different results, to get the optimal ones.

To be able to develop our ML-based classifier for our REAL-880 data set we trained and
optimized seven ML-based classification models. It must be mentioned that for the training
and optimization of each classifier we used a combination of the appropriate
hyperparameters based on each ML-based algorithm, which consisted of a wide range of
values. The values given in each parameter were related to the type and size of the features

of the training set, as well as to the computing power of our system.

51

5.4.1 GB-based Classifier
GB as mentioned consists of a member of the model family and can handle features with

low predictive power internally. GB models are parts of ensemble learning algorithms,
which rely on a collective decision from inefficient prediction models known as decision
trees. During the boosting step, each new tree is based on a modified version of the original
data set. To begin, GB constructs a decision tree and assigns equal weight to each
observation. Following the initial tree assessment, the weights for the easy-to-classify
observations decrease while the weights for the difficult-to-classify observations grow.
Then, the next tree grows on the weighted data, attempting to enhance the first tree's
predictions. The new model is an amalgamation of the first and second trees. The
classification error is calculated, and a third tree is built to forecast the corrected residuals.
This technique is performed for a set number of iterations until convergence is reached. The
final ensemble model's forecast is the weighted total of the predictions provided by all
previous model iterations. The most common hyperparameters for the training of GB-based
models are learning rate, number of estimators, max tree depth and max features. Number
of estimators consists of the total number of sequential trees to be modeled. Max tree depth
parameter controls the depth of the individual trees. And max features parameter is the
number of features that will be used for the best split of the model. In Figure 5.3 is presented

a typical structure of a GB algorithm.

A

Figure 5.3 GB algorithm

GB-based classifier development is based on the combination of four hyperparameters:
learning rate, max tree depth, number of estimators and max features. The hyperparameter
learning rate controls the gradient descent by evaluating the contribution of each tree to the
final result. For the training of our GB-based classifier we used a list of learning rate values
from 0.05 to 1. The number of estimators hyperparameter represents the total number of
sequential trees to be modeled. We used a list of the number of estimators, with values from

10 to 100. The max tree depth hyperparameter controls the depth of the individual trees. We

52

used a list of max tree depth values from 1 to 10. Furthermore, the max features parameter
represents the number of features that will be used for the best split. A list of max features
values from 1 to 11 was used. The best combination of hyperparameters for our REAL-880
data set was: learning rate 0.05, number of estimators 10, max tree depth 11 and max features
10. In Table 5.2 are presented the range of the hyperparameters used and combined for the
development of our GB-REAL-880 classifier. Also, in Figure 5.4 are presented the
histograms with the most important features for the development of our GB-REAL-880
classifier. The “conditional total power” with “numbers of ports” and “number of cells” were
the most important features. Those features helped our model to increase the classification

between the two given classes.

Table 5.2 Table with the range of hyperparameters for the GB-REAL-880 classifier

Hyperparameter Range
Learning rate 0.05-1
Number of estimators 10 - 100
Max tree depth 1-10
Max features 1-11
GB-REAL-880

Combinational total power
Number of ports

Number of cells

Total power

Number of nets

Number of references

Net switching power

Total switching power
Combinational switching power
Number of sequential cells

Total dynamic power

0.00 0.05 0.10 0.15 0.20 0.25

Figure 5.4 Feature importance for GB-REAL-880 classifier

5.4.2 KNN-based Classifier
KNN is a type of IB learning that can be used for solving supervised regression and

classification problems simply and easily. The KNN algorithm is based on the assumption

that the same things exist in a close area. In other words, similar things are close to one

53

another. KNN is based on the idea of similarity (also known as distance, proximity, or
closeness) figuring the space between points on a graph. There are various methods of
calculating distance, and one way might be preferable depending on the problem. The KNN
algorithm is initially loaded with the training data set, which is commonly referred to as x,
and their goal values, which are referred to as y. Goal value y needs to be classified. Then is
initialized k to a preferable number of neighbors and for each data sample is computed the
distance between the sample whose target value is wanted to classify. Next, are added both
the index and the distance of the query example to an ordered list of indices and distances
and sort this list in ascending order (from smaller to bigger), with the distance as order
criteria. Finally, are picked the first k entries from the sorted list are got the labels of the
selected k entries. So can be returned in the form of the k labels. Some of the most often
used hyperparameters for the training of a KNN-based model are a number of neighbors,
leaf size and weights metrics. A number of neighbors are used to returned indices of and
distances to the neighbors of each point. Leaf size parameter that is to say the maximum
number of points a node can hold. Weights parameter is used to approximate the optimal
degree of influence of individual features using a training set. When successfully applied
relevant features are attributed a high weight value, whereas irrelevant features are given a

weight value close to zero. In Figure 5.5 is presented a typical structure of a KNN algorithm.

Figure 5.5 KNN algorithm

For the development of our KNN-based classifier, we used five hyperparameters: number of
neighbors, distances, leaf size and weights. The number of neighbors hyperparameter is the
core deciding factor. For this hyperparameter, we used a list of values from 1 to 60. Distances
were used for the KNN classifier to be able to calculate the distances between the point and
points in the training set. On this occasion, we used a list of distance values from 1 to 10.
The leaf size parameter defines the maximum number of points a node can hold. We used a
list of leaf size values from 1 to 50. The weights parameter gives more weight to the points

which are nearby and less weight to the points which are farther away. The uniform and

54

distance weights were used for the training and optimization of our KNN-based model. The
best combination of hyperparameters for our REAL-880 data set was: number of neighbors
1, distances 1, leaf size 1 and weights ‘uniform’. In Table 5.3 are presented the range of
hyperparameters used and combined for the development of our KNN-REAL-880 classifier

for the real data set.

Table 5.3 Table with the range of hyperparameters for the KNN-REAL-880 classifier

Hyperparameter Range

Number of neighbors 1-60

Distances 1-10

Leaf size 1-50
Weights uniform, distance

5.4.3 LR-based Classifier
LR is a supervised ML algorithm used for classification problems, and specifically for

categorizing observations into a group of discrete classes. Although linear regression assigns
observations to a continuous number of values, LR applies on its output a transformation -
activation — function, called the logistic sigmoid function. It returns a probability value
which can then be matched with two or more classes. LR is used when the target — dependent
- variable is categorical. For example, to predict whether an email is a spam (1) or not (0)
(binary LR) or to predict whether a car with specific characteristics belongs to a model, etc.

(multiclass LR). In Figure 5.6 is presented a typical structure of an LR algorithm.

Figure 5.6 LR algorithm

For the training and optimization of our LR-based classifier, we used four hyperparameters:
solver, penalty, C and max iterations. The solver hyperparameter solves optimization
problems of the LR algorithm through coordinate descent (CD) algorithms. For this
parameter, we used Newton-CG [142], limited-memory Broyden—Fletcher—Goldfarb—

55

Shanno (LM-BFGS) [143], library large-scale linear LIBLINEAR [144], stochastic average
gradient (SAG) [145] and SAGA [146] CD algorithms. Penalties were used to shrink the
coefficients of the less contributed variable toward zero. We used three types of penalties:
11, 12 and elasticnet. The C parameter controls the penalty strength; we used a list of C values
from 0.01 to 1000. The max iterations parameter is the maximum number of iterations taken
for the solvers to converge. A list of max iterations values from 100 to 7000 was used. The
best combination of hyperparameters for our REAL-880 data set was: solver ‘Newton-CG’,
penalty ‘12’, C 0.01 and max iterations 100. In Table 5.4 are presented the range of
hyperparameters used and combined for the development of our LR-REAL-880 classifier

for the real data set.

Table 5.4 Table with the range of hyperparameters for the LR-REAL-880 classifier

Hyperparameter Range
Solver newton-cg, Im-bfgs, liblinear, sag, saga
Penalty 11, 12, elasticnet
C 0.01 — 1000
Max iterations 100 — 7000

5.4.4 MLP-based Classifier
ANNSs are built as the model of neurons present in the human brain. Based on the philosophy

of ANNSs the algorithm MLP consists of a feedforward ANN that generates a set of outputs
from a set of inputs. Specifically, an MLP is a neural network that connects multiple layers
in a directed graph, meaning that the signal route across the nodes is only one direction.
Aside from the input nodes, each node has a nonlinear activation function. MLP is frequently
utilized for supervised learning tasks. Common hyperparameters for an MLP model are
hidden layer sizes, activation, solver, alpha, max iterations and learning rate. Hidden layers
size is used for the creation of the hidden layers. The hidden layers are produced according
to the size value. Also, the hidden layer simply produces layers of mathematical functions
each designed to produce an output specific to an intended result. Activation hyperparameter
consists of an activation function that defines how the weighted sum of the input is turned
into an output from a node or nodes in a network layer. Solver parameter represents a
stochastic gradient descent-based optimizer for optimizing the parameters in the
computation graph. The alpha parameter is a regularization term, also known as a penalty

term, that combats overfitting by limiting the size of the weights. Increasing alpha may

56

alleviate high variance by encouraging smaller weights, resulting in a decision boundary plot
with fewer curvatures. An iteration is the number of times a batch of data is processed by
the algorithm. In the context of neural networks, this refers to the forward and backward
passes. As a result, each time you run a batch of data through the ANN, you complete an
iteration. The learning rate, in particular, is an adjustable hyperparameter used in neural
network training that has a tiny positive value, typically in the range of 0.0 to 1.0. The
learning rate determines how quickly the model adapts to a new situation. It could be the
model's most essential hyperparameter. In Figure 5.7 is presented a typical structure of an

MLP algorithm.

Figure 5.7 MLP algorithm

For the training optimization of our MLP-based classifier, six hyperparameters were used:
hidden layer sizes, activation, solver, alpha, max iterations and learning rate. The hidden
layer sizes parameter defines the number of hidden layers of the network. A list of hidden
layer size values from 10 to 50 was used. The activation function parameter was used to
introduce non-linearity into the output of a neuron. A neural network has neurons that work
in correspondence to weight, bias and their respective activation function. We used four
types of activation function: identity, logistic, Tanh and ReLU. The solver parameter
represents a stochastic gradient descent-based optimizer for optimizing the parameters in the
computation graph. We used LM-BFGS, SGD and Adam optimizer. Alpha is a parameter
for the regularization term, which combats overfitting by constraining the size of the weights.
A list of alpha values from 0.001 to 0.9 was used. The maximum number of iterations
parameter determines the solver. The solver iterates to this number of maximum iterations.
A list of 100—1000 values from the maximum number of iterations was used. The learning
rate parameter controls the rate of speed at which the model learns. We used three types of
learning rate: constant, adaptive and invscaling. The best combination of hyperparameters
for our REAL-880 data set was: hidden layer sizes 30, 30, 30, activation ‘ReLU’, solver

‘Adam’, alpha 0.0001, max iterations 500 and learning rate ‘constant’. In Table 5.5 are

57

presented the range of hyperparameters used and combined for the development of our MLP-

REAL-880 classifier for the real data set.

Table 5.5 Table with the range of hyperparameters for the MLP-REAL-880 classifier

Hyperparameter Range
Hidden layer sizes 10-50
Activation identity, logistic, tanh, relu
Solver Im-bfgs, sgd, adam
Alpha 0.001 -0.9
Max iterations 100 — 1000
Learning rate constant, adaptive, invscaling

5.4.5 RF-based Classifier
RF consists of a summation of Decision Trees. The general idea of this technique is that a

mixture of learning models raises the general result. RF builds multiple decision trees and
merges them together to achieve the preciseness and stability of the prediction. In that way,
it prevents overfitting by creating random subsets of the features, building smaller trees using
these subsets and combining them to increase the overall performance. RF categorizes a
sample to the class with the maximum “votes” among each subtree. RF makes the model
more random while developing the trees. Rather than looking for the most significant feature
while splitting a node, it scans for the best element among a random subset of features. This
outcome in a wide variety that by and large results in a greater model. Some of the most
common hyperparameters for the training of an RF-based model are a number of estimators,
max features, max depth and min sample leaf. Number of estimators is the number of trees
that are used to construct before calculating the maximum voting or prediction averages. A
greater number of trees improves performance but needs more computer power. Max
features parameter is used to determine the maximum number of features RF is allowed to
try an individual tree. For instance, if the total number of variables is 100, we can only take
10 of them in the individual tree. Max depth parameter represents the depth of each tree in
the forest The deeper the tree, the more splits it has and the more information it captures
about the data. Min sample leaf parameter represents the minimum number of samples

required to be at a leaf node. In Figure 5.8 is presented a typical structure of an RF algorithm.

58

AL

Figure 5.8 RF algorithm

For our RF-based classifier training optimization, we used four hyperparameters: number of
estimators, max features, max depth and min sample leaf. The number of estimators
parameter defines the number of trees in the algorithm. We used a list of the number of
estimator parameter values from 100 to 5000. The max features parameter defines the
number of features to consider when looking for the best split. We used auto, sqrt and log2
max feature values. The max depth parameter represents the depth of each tree in the forest.
The deeper the tree, the more splits it has, and it collects more information about the data. A
list of max depth values from 2 to 50 was used. The min sample leaf parameter consists of
the minimum number of samples required to be at a leaf node. We used values from 1 to 20
for this parameter. The best combination of hyperparameters for our REAL-880 data set was:
number of estimators 200, max features ‘auto’, max depth 10 and min sample leaf 2. In Table
5.6 are presented the range of hyperparameters used and combined for the development of

our RF-REAL-880 classifier for the real data set.

Table 5.6 Table with the range of hyperparameters for the RF-REAL-880 classifier

Hyperparameter Range
Number of estimators 100 -5000
Max features auto, sqrt, log2
Max depth 2-50
Min sample leaf 1-20

5.4.6 SVM-based Classifier
SVM is an algorithm intrinsically for binary problems. SVMs transform the input feature

space into higher-dimensional feature space using the kernel trick dot product. Each data
set’s sample distance can be found to a given dividing hyperplane. Margin is called the
minimum distance from the samples to the hyperplane. The transformed data can be
separated using a hyperplane, the dividing curve between distinct classes. The optimal

hyperplane maximizes the margin. Its goal is to classify a new sample by simply computing

59

the distance from the hyperplane. Based on global optimization, SVMs deal with overfitting
problems, which appear in high-dimensional spaces, making them appealing in various
applications [147][148]. Most used SVM algorithms include the support vector regression
[149], least squares SVM [150] and successive projection algorithm-SVM [151]. In other
words, an SVM is a linear separator that focuses on creating a hyperplane with the largest
possible margin. Its goal is to classify a new sample by simply computing the distance from
the hyperplane. On a two-dimensional feature space, the hyperplane is a single line dividing
the two classes. On a multi-dimensional feature space, where the data are non-linearly
separable an SVM cannot linearly classify the data. In this case, it uses the kernel trick. The
main concept has to do with the fact that the new multidimensional feature space could have
a linear decision boundary which might not be linear in the original feature space. Common
in use SVM hyperparameters is C, gamma and kernel. The C parameter instructs the SVM
optimizer how much you wish to avoid misclassifying each training example. For large
values of C, the optimization will select a smaller-margin hyperplane if it does a better job
of accurately classifying all of the training points. The gamma parameter defines how far a
single training example's impact extends, with low values indicating 'far' and large values
indicating 'near.' The gamma parameters can be thought of as the inverse of the radius of
influence of samples chosen as support vectors by the model. A kernel function is a way for
taking data as input and transforming it into the needed form for processing. The term
"kernel" is chosen because the collection of mathematical functions utilized in SVM
provides a window through which data can be manipulated. In Figure 5.9 is presented a

typical structure of an SVM algorithm.

Figure 5.9 SVM algorithm

We trained and optimized our SVM-based classifier according to three hyperparameters: C,
gamma and kernel. The C parameter is a regularization parameter. It controls the tradeoff
between the smooth decision boundary and classifying the training points correctly. C values

from 0.0001 to 100 were used. The gamma parameter defines how far the influence of a

60

single training example reaches. We used scale and auto gamma values. The kernel
parameter specifies the kernel type to be used in the algorithm to improve the classification
accuracy of the classifier. We used four types of kernels: linear, polynomial, gaussian radial
basis function (RDF) and sigmoid. The best combination of hyperparameters for our REAL-
880 data set was: C 20, gamma ‘scale’ and kernel ‘poly’. In Table 5.7 are presented the range
of hyperparameters which used and combined for the development of our SVM-REAL-880

classifier for the real data set.

Table 5.7 Table with the range of hyperparameters for the SVM-REAL-880 classifier

Hyperparameter Range
C 0.0001 —100
Gamma scale, auto
Kernel linear, polynomial, gaussian radial basis

5.4.7 XGB-based Classifier
XGB belongs to the family of ensemble learning methods. Sometimes, it could be

insufficient to depend on the results of only one ML method applied to our data. Ensemble
learning techniques use a systematic method to combine the predictive power of various
learning methods. The output of this combination is a model that provides the totaled result
from smaller-weaker- models. Most of the time, we use the XGB algorithm with decision

trees.

For the training and optimization of our XGB-based classifier we used three
hyperparameters: learning rate, number of estimators and max depth. The learning rate
parameter controls the gradient descent. We used a list of learning rate values from 0.05 to
1. The number of estimators hyperparameter represents the total number of sequential trees
to be modeled. We used a list of the number of estimators values from 10 to 100. The max
tree depth hyperparameter controls the depth of the individual trees. We used a list of max
tree depth values from 1 to 11. Furthermore, the max features parameter represents the
number of features that will be used for the best split. A list of max features values from 1
to 11 was used. The best combination of hyperparameters for our REAL-880 data set was:
learning rate 0.25, number of estimators 60 and max depth 5. In Table 5.8 are presented the
range of hyperparameters which used and combined for the development of our XGB-

REAL-880 classifier for the real data set.

61

Table 5.8 Table with the range of hyperparameters for the XGB-REAL-880 classifier

Hyperparameter Range
Learning rate 0.05-1
Number of estimators 10— 100

Max tree depth 1-11

5.5 Machine Learning Classifiers Evaluation

Once we have completed the steps of data collection and preparation, and after we select
algorithms and train our model, it is time to evaluate our model. For the evaluation of our
model is used a test set which mainly consisted of 20% of the total data set and the samples
of this set are unknown to our model. For example, in the case of HTs classification, the test
set consisted of unknown infected and free circuits features which the model will process for

the first time and needs to classify.

In this thesis, for the evaluation of the performance of ML algorithms we used Accuracy,
Precision, Recall or Sensitivity, Specificity, 1-Specificity and F1-score metrics. To evaluate
the mentioned metrics, we used the values True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN). The TP value represents the number of TI circuits
classified as TI, while the FP value represents the number of TF circuits that are wrongly
classified as TI. On the other hand, the FN value represents the TI circuits that are classified
as TF, and the TN value represents the number of TF circuits classified as TF. These values
are used for the calculation of Accuracy (1), Precision (2), Recall (3), Specificity (4), 1-
Specificity (5) and F1 (6) metrics. As mentioned, positive samples indicate the TI circuits
and our negative samples indicate the TF circuits. Accuracy is defined as the number of
correct predictions divided by the total number of predictions (1). Precision defines the total
number of TP values divided by the total number of all positive values (2). Recall defines
the total number of TP values divided by the total number of TP and FN values (3) and can
be characterized as the True Positive Rate (TPR). Specificity defines the total number of TN
values divided by the total number of TN and FP values (4) and can be characterized as the
True Negative Rate (TNR). 1-Sensitivity defines the total number of FP values divided by
the total number of TN and FP values (5). F1-score is the harmonic mean of Precision and
Recall and is defined from the multiplication of Precision by Recall and then by the number

two divided by the product of Precision and Recall (6). Additionally, based on these metrics

62

we produced the receiver operating characteristic (ROC) and Precision—Recall curves. The
ROC curve calculates the area under the curve (AUC) which is the measure of the ability of
a classifier to distinguish between classes and is used as a summary of the ROC curve, while
average precision (AP) summarizes a Precision—Recall curve as the weighted mean of the

precisions achieved at each threshold (7).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)
Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) 3)

Specificity = TN/(TN + FP) 4)

1-Specificity = FP/(TN + FP))

F1-score = 2(Precision * Sensitivity)/(Precision + Sensitivity) (6)
AP =¥,[(Rn — R(n — 1)) * Pn] (7

From Figure 5.10, it can be observed that for the training set all classifiers had a good
performance. On the other hand, for the test evaluation set, none of our classifiers performed
well. Specifically, the GB-based classifier was found to be the best-performing classifier on
the test set compared with the other six, with 97.72% Accuracy, 74.13% Precision, 62.20%
Recall and 66.08% F1-score (Figure 5.11). Additionally, good results were returned for
MLP-based classifier, with 96.59% Accuracy, 61.92% Precision, 61.62% Recall and 61.62%
and F1-score 61.92%. Thus, according to the results, the GB-based classifier was the most
efficient. Based on the GB algorithm, we developed and compared our real and our new

generated data sets.

63

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

98.43%
100%

GB KNN LR MLP RF SVM XGB

B ACCURACY MEPRECISION mRECALL m™F1-SCORE

Figure 5.10 Histograms of the performance of our seven ML models on our REAL-880
training set
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

GB KNN LR

B ACCURACY MEPRECISION m®RECALL mF1-SCORE
Figure 5.11 Histograms of the performance of our seven ML models on our REAL-880 test

set

5.6 GAINESIS Development

Our first step for the development of our new synthetic data sets based on our generative

models was to explore our real training data set. As previously mentioned, the TI class

64

consists of 98% of our total initial real training data set, with 704 samples, and the TF class
only 2%, with 14 samples. From the exploration of our real training data set, we observed
that TT samples in their majority had greater mean values compared with TF. This is logical
because TI circuits are modified TF circuits with HTs and use extra area features such as
gates, cells, nets, etc., for the construction of the structure of the inserted HT. On the other
hand, these extra area features need more power. Thus, TI circuits consume more power

from TF (Figure 5.12).

4- - T, a-
- T
3 3 3
o
s
m2 2 2
£
w
1 1 1
o. il | | ", o a1]] . b 1 [I L
] 1 2 3 a 5 6 7 8 0 1 2 3 4 5 & 0 1 2 3 a H 6
Numberofports Numberofnets Numberofcells
4 a- 4

Fraction

2 2

1 1 1

. iL o) l|||| .l.l_.I.I._Lul.|I.L.I.LL.._ . “ H I| [_ 1
=1 o

00 25 S50 75 100 125 150 175 200 -15 -1.0 -0.5 0.0 ©05 1.0 15 2.0 1 2 3
Numbercfsequentialcells Numberofreferences NetSwitchingPower

4- a- a-
c3- 3- 3-
o
5
"2 2 3
i
e
1 I‘ I I 1 1
o) | I 55 I_ll o M mn L o S | | | | L
-1 o 1 2 3 0 1 2 3 4 5 6] 1 2 3 4 H 6
TotalDynamicPower Combi lenalSwitchingP, CombinationalTotalPower
4 a
c3- 3-
o
2
w2 2
i
w
1 1
] I ; ! L o Il-l- : !) L
0 1 2 3 4 s 6 0 1 2 3 a H 6
TotalSwitchingPower TotalTotalPower

Figure 5.12 Data distributions by feature and class

As it turns out, our real training data set is inadequate and unequal. The data are the most
significant part of any ML project. A lack of data samples and a lack of diversity data can
lead to mediocre ML projects. Additionally, supervised learning models require data, and
their performance is largely based on the size of the training data available. So, to solve these
functional problems, we needed to produce more TF samples. In the bibliography exist
different techniques for data synthesis on ML. In our study, we used a novel state-of-the-art
technique for data-synthesis-based DL, known as GANs. GANs algorithms mainly are used

for the field of computer vision and especially for image editing and data generation, and

65

use 2D or 3D (two- or three-dimensional) networks based on convolutional neural networks
(CNNs). In this thesis, we modified the networks to 1D (one-dimensional) networks based

on DNNs, because our data set consisted of 1D features.

To solve these functional problems which occurred from the lack of data samples, we
developed and compared four generative learning models. As mentioned, we developed four
models based on four different algorithms, GAN, CGAN, WGAN and WCGAN, for the

synthesis of new samples.

5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms
GL algorithms aim to generate new synthetic samples and they can be applied as a solution

for the imbalanced data sets. In this section is mentioned GL-based algorithms which can be
used for the synthesis of new samples for databases cases such as normal and infected
circuits. For the development of GL-based models must be developed as many models as the
number of classes that are contained in the data set. Then, depending on the algorithm which
will be used, there may be a need to applied some clustering algorithms. With the use of the
clustering algorithms the user will be able to cluster each given class to sub-classes in order

to be able to use the class label as an extra feature.

Specifically, GANs consist of two models, a generator and a discriminator. These are trained
simultaneously by an adversarial process. The generator learns to produce data that look real
based on real samples, while the discriminator learns to distinguish the real from generated
data to the point where it is no longer able to distinguish them. CGANSs is an architecture
close to the original GANs, with the only difference being that it makes use of the class
labels feature. CGAN, with the use of the class labels feature, allows the targeted synthesis
of a given sample. WGANS are based on the philosophy of GANs, with the difference that
they use the Wasserstein distance metric for the development of the two models, generator
and discriminator. The Wasserstein distance metric provides a meaningful and smooth
representation of the distance between distributions. This algorithm enhances model stability
during training and gives a loss function that corresponds with sample quality. The last
algorithm which was used and compared for the generation of new samples was the
WCGAN. WCGANSs have the same functionality as the WGANSs, with the difference that
the CGANs make use of the class labels feature for the training of the generator and
discriminator models. Next, the hyperparameters that were used to improve the development

of our four models are presented.

66

For the development of our four models, we used and combined six hyperparameters:
learning rate, batch size, number of epochs, optimizer, number of units in a dense layer and
activation function. Each hyperparameter contained a wide range of values. The
hyperparameter learning rate controls the model in response to the estimated error each time
the model weights are updated. On this occasion, we used a list of learning rate values from
0.0001 to 0.001. The hyperparameter batch size defines the number of samples that will be
propagated through the network. We used a list of batch size values from 16 to 64. The
number of epochs hyperparameter specifies the time in which the learning algorithm will
process the whole training data set. We used a different number of epochs values from 1000
to 50,000. The optimizer hyperparameter affects the attributes of the neural network such as
weights and learning rate to reduce the losses. For the development of our models, we used
three optimizers: stochastic gradient descent (SGD) [152], Adam [153] and root mean square
propagation (RMSprop) [154]. The number of units in a dense layer hyperparameter affects
the effectiveness of our models. On this occasion, we used different numbers of units in a
dense layer, from 25 to 512. The activation function hyperparameter describes how the
weighted sum of the input is turned into an output from a node or nodes in a network layer.
Specifically, we used three activation functions: rectified linear unit (ReLU) [155], sigmoid

[156] and hyperbolic tangent (Tanh) [157] (Table 5.9).

Table 5.9 Table with the range of hyperparameters for the generative learning models

Hyperparameter Range
Learning rate 0.0001-0.001
Batch size 16-64
Number of epochs 1000-50,000
Optimizers SGD, Adam, RMSprop
Dense layer 25-512
Activation function ReLU, sigmoid, Tanh

So, as mentioned for the development of our four models we combined all the values of each
hyperparameter. The optimum hyperparameters combination was learning rate equal to
0.0005, batch size equal to 64, number of epochs equal to 50,000, optimizer being Adam,
number of units in a dense layer equal to 128 for the first layer, and activation function being

ReLU. It should be noted that for the development of the generator network for each layer,

67

we multiplied exponentially by the number two the number of units in a dense layer, for the
discriminator network we multiplied by number four the first dense layer, and for the other
layers we divided it by the number two. Additionally, for the first three dense layers of the
generator, the best activation function was ReLLU, the same as for the discriminator, except
for the last fourth dense layer of the discriminator network, in which the best activation
function was sigmoid. The values given in each parameter were related to the type and size
of the features of the training set, as well as to the ability of the computing power of our

system.

In Table 5.10 and Table 5.11 is presented the generator network for each of our four models.
GAN- and WGAN-based models are different from CGAN and WCGAN because, as
previously mentioned, CGAN- and WCGAN-based models use as an extra feature the class
of the sample. Additionally, in Table 5.12 and Table 5.13 is presented the discriminator
network for each of our four models. The only difference between our models is in the input
layer, because CGAN- and WCGAN-based models, as previously mentioned, use as an extra

feature the class of the sample.

Table 5.10 GAN and WGAN models generator network

Layer Output Parameters
Input layer 1 (None, 11) 0
Dense 1 (None, 128) 1536
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643

Table 5.11 CGAN and WCGAN models generator network

Layer Output Parameters
Input layer 1 (None, 11) 0
Input layer 2 (None, 1) 0

Concatenate 1 (None, 12) 0
Dense 1 (None, 128) 1664
Dense 2 (None, 256) 33,024
Dense 3 (None, 512) 131,584
Dense 4 (None, 11) 5643

68

Concatenate 1 (None, 12) 0

Table 5.12 GAN and WGAN models discriminator network

Layer Output Parameters
Input layer 1 (None, 11) 0
Dense 1 (None, 512) 6144
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129

Table 5.13 CGAN and WCGAN models discriminator network

Layer Output Parameters
Input layer 1 (None, 12) 0
Dense 1 (None, 512) 6656
Dense 2 (None, 256) 131,328
Dense 3 (None, 128) 32,896
Dense 4 (None, 1) 129
5.7 GAINESIS Evaluation

To evaluate the performance of our models, we used metrics such as the Minmax and
Wasserstein loss functions. Specifically, the Minmax loss function reflects the distance
between the distribution of the generated data and the distribution of the real data, for GAN-
and CGAN-based models. GAN and CGAN algorithms use two Minmax loss functions, one
for the generator and one for the discriminator. A single measure of distance between
probability distributions yields both generator and discriminator losses. The generator can
only change one component of the distance measure in any of these schemes, the term that
represents the distribution of the fake. As a consequence, we eliminate the other term that
reflects the distribution of the actual data during generator training. The formula for minmax
loss is presented in Equation (8). D(x) estimates the probability that the real data instance x
is real for the discriminator. Ex is the expected value over all real data instances. G(z) is the
output of the generator when given noise z. D(G(z)) estimates the probability that a fake
instance is real for the discriminator. Ez is the expected value over all generated fake
instances G(z)). For the evaluation of a model in WGAN and WCGAN algorithms, the

discriminator does not classify instances but outputs a number. The discriminator aims to

69

increase the output for real instances rather than fake instances. For this reason, we use the
Wasserstein Discriminator Loss (9) and Generator Loss (10). Specifically, D(x) is the output
for areal instance at the discriminator. G(z) is the output when given noise z, at the generator.

D(G(z)) is the output for a fake instance at the discriminator.

Minmax Loss = Ex[log(D(x))] + Ez[log(1-D(G(z)))] (8)
Wasserstein Discriminator Loss = D(x)-D(G(z)))
Wasserstein Generator Loss = D(G(z)) (10)

From our four generative learning models, our WCGAN-based model was found to be the
best-performing model in epoch 47,000 of 50,000 epochs, with a generator loss value equal
to 0.102 (Figure 5.13) and discriminator loss value equal to 0.0984 (Figure 5.14). The next
best-performing model was our WGAN-based model for epoch 47,000 from 50,000 epochs,
with a generator loss value equal to 0.0995 (Figure 5.13) and discriminator loss value equal
to 0.114 (Figure 5.14), while our CGAN-based model’s best epoch was 48,000 from 50,000
epochs, with a generator loss value equal to 0.369 (Figure 5.13) and discriminator loss value
equal to 0.263 (Figure 5.14). Our GAN-based model was our worst-performing model, with
the best epoch being epoch 46,000 of 50,000 epochs, and a generator loss value equal to
0.453 (Figure 5.13) and discriminator loss equal to 0.273 (Figure 5.14).

076 —— GAN
- R
—— WGAN
05— WeGAN — k_\.\’_\»
a
o 0.4-
a
o
S o3-
©
=
S 02-
o
(U)
0.1-
0.0 -
0 10,000 20,000 30,000 40,000 50,000

Epoch

Figure 5.13 Generator loss values of our four models for each epoch

70

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1-

Discriminator Loss

0.0 -

GAN
CGAN
WGAN
WCGAN

10,000 20,000

30,000

Epoch

40,000 50,000

Figure 5.14 Discriminator loss values of our four models for each epoch

Additionally, we displayed for each epoch the ability of each model to synthesize new

generated samples based on real samples according to the most important features. From

this, we observed that our best-performing WCGAN-based model (Figure 5.15) was able to

synthesize better-generated samples compared with the other models and especially

compared with our worst-performing GAN-based model (Figure 5.16). To distinguish any

differences in the quality of the new generated samples and to confirm the evaluation of our

models, we synthesized new samples based on our best-performing WCGAN-based model

and based on our worst-performing model GAN-based model in order to develop new GB-

based classifiers.

200000

175000

150000

Real Samples

2]

g 125000

5

5 100000 @

£

3 75000 o
50000
25000 °

o & °

0

5000 10000 15000 20000 25000
Numberofports

200000

175000

150000

125000

100000

75000

Numberofnets

50000

25000

0

L

Generated Samples

2@

0

5000 10000 15000 20000 25000
Numberofports

Figure 5.15 Presentation of how our best-performing WCGAN-based model learned to

synthesize new generated samples based on real samples

71

Real Samples Generated Samples

200000 200000
175000 175000
150000 150000
o w
o 125000 o 125000
£ £
< 100000 § 100000
e e}
g 75000 g 75000
=z pd
50000 50000
25000 25000
o &Y 0
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Numberofports Numberofports

Figure 5.16 Presentation of how our worst-performing GAN-based model learned to

synthesize new generated samples based on real samples

5.8 Synthesis of New Generated Data Sets

After we finished with the training, optimization, and evaluation of our four models, we
selected the best- and worst-performing models. As occurred previously, the model that
learned to synthesize new generated data similar to the real data was our WCGAN-based
model, while the model with the worst performance was our GAN-based model.
Additionally, to be able to observe any differences, we created differently sized data sets
from each model. As a result, our new generated data sets, which are based on our best-
performing WCGAN model, were named WCGAN-200, WCGAN-400 and WCGAN-600
according to the size of the sample. Additionally, our new generated data sets were based on
our worst-performing GAN model, and named GAN-200, GAN-400 and GAN-600. Next,
we mixed each new generated data set with the initial real training data set, not the test set,
to be able to evaluate our best new GB-based classifier in the real test data set. So, our mixed
data sets were WCGAN-Mixed-200, WCGAN-Mixed-400, WCGAN-Mixed-600, GAN-
Mixed-200, GAN-Mixed-400, and GAN-mixed-600. In total, we had 12 new data sets to
compare. As in the real data set, the new generated data sets’ TF circuits consisted of positive
samples, with a class label equal to one (label = 1), and TI circuits consisted of our negative
samples, with a class label equal to zero (label = 0). Additionally, as mentioned previously,
80% of each data set was used for the training of our new GB-based models, and 20% for
the evaluation. Next, we analyzed the details of each data set and how these were used for

the training and evaluation of our new GB-based models.

72

As a result, our new generated data sets were six in total, three for each model and three data
sets different in sample size. WCGAN-200 and GAN-200 data sets were our data sets
smallest in sample size and consisted of 432 samples, 216 TF and 216 TI samples. A total
of 345 samples, 171 TF and 174 TI, were used for the training, and 87 samples, 45 TF and
42 TI, were used for the evaluation of our new GB-based models. Our middle range data sets
were WCGAN-400 and GAN-400 data sets. They consisted of 864 samples: 432 TF and 432
TI samples. A total of 691 samples, 357 TF and 334 TI samples, were used for the training
and 173 samples, 75 TF and 98 TI samples, for the evaluation of our new GB-based
classifiers. Our large-sample generated data sets were WCGAN-600 and GAN-600. These
data sets consisted of 1296 samples, 648 TF and 648 TI samples. For the training of our new
GB-based classifiers, we used 1036 samples, 523 TF and 513 TI, and for the evaluation 260
samples, 125 TF and 135 TI. Furthermore, as well as our new generated data sets, our mixed
data sets were in total six in number. WCGAN-Mixed-200 and GAN-Mixed-200 data sets
each consisted of one in total from 1136 samples, 230 TF and 906 TI. From these 908
samples, 191 TF and 717 TI were used for the training and 228 samples, 43 TF and 185 TI,
were used for the evaluation. WCGAN-Mixed-400 and GAN-Mixed-400 data sets consisted,
respectively, of 1568 samples in total, 446 TF and 1122 TI. From these 1254 samples, 359
TF and 895 TI were used as a training set and 314 samples, 91 TF and 223 TI samples were
used as an evaluation set. Our last mixed data sets were WCGAN-Mixed-600 and GAN-
Mixed-600. Each one of these data sets had in total 2000 samples, 662 TF and 1338 TI
samples. The training set consisted of 1600 samples, 544 TF and 1056 TI samples while the
evaluation set consisted of 400 samples, 122 TF and 278 TI (Figure 5.17).

73

2000

1800

1600

1400

1200

1000 1122

BOO

432 43 53 £08
600

A
648 648

2 432 446

2 =4
(=] =] =3
=
]
B
W
)
~
w
=]
[
w
o

mTOTALTF mTOTALTI

Figure 5.17 Histograms with the distribution of TF and TI samples for our 13 data sets

5.9 New Generated GB-based Classifiers Development

As mentioned, for the classification of our REAL-880 data set the best ML-based classifier
from the seven compared algorithms was the GB-based classifier. As a result, we based on
GB-algorithm for the classification of our new generated data sets. As previously for the
development of our new generated GB-based classifiers we used and combined a list of four
hyperparameters: learning rate, max tree depth, number of estimators and max features.
Specifically, we used a list of learning rate values from 0.05 to 1, a list of number of
estimators with values from 10 to 100, a list of max tree depth values from 1 to 10 and a list
of max features values from 1 to 11. In Table 5.14 are presented the best combination of
hyperparameters for each of the six new generated GB-based classifiers. Also, in Figure 5.18
are presented the most important features for each new generated GB-based classifier. It is
observed that the most important feature for the six classifiers was “number of nets”. While
for the GB-WCGAN-based classifiers the next most important feature was the “total

dynamic power” and for the GB-GAN-based was the “combinational total power”.

74

Table 5.14 Table with the range of hyperparameters for the new generated GB-based

classifiers
. Learning Number of Max tree Max
Classifier .
rate estimators depth features

GB-WCGAN-200
GB-GAN-200
GB-WCGAN-400
GB-GAN-400
GB-WCGAN-600
GB-GAN-600

0.05
0.05
0.05
0.05
0.05
0.05

10
10
10
10
10
10

1

N —m = =

6

3
6
3

_
w S

GB-WCGAN-200

Total dynamic power

Number of nets

Number of sequential cells
Combinational total power

Net switching power

Total switching power

Number of references
Combinational switching power
Number of ports

Total pewer

Number of cells

0.00 0.05 0.10 0.15 .20

GB-WCGAN-400

Number of nets

Total dynamic pawer

Number of references

Number of sequential cells
Combinational total pawar

Net switching power

Number of ports
Combinational switching power
Number of cells

Total power

Total switching power

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

(©)

Number of nets

Combinational total power
Combinational switching power
Number of references

Number of ports

Total power

Number of sequential cells
Total dynamic power

Number of cells

Total switching power

Met switching power

0.00

Number of nets

Total dynamic power

Number of references

Number of ports
Combinational switching power
Total power

Combinational total power
Number of sequential cells
Number of cells

Tatal switching power

Net switching power

0.00

75

GB-GAN-200
0.05 0.10 0.15 0.20
GB-GAN-400

GB-WCGAN-600

Total dynamic power

Number of nets

Combinational tatal power
Number of sequential cells
Number of references
Number of ports

Net switching power
Number of cells

Combinational switching power
Total power

Total switching power

0.000 0.025 0.050 0.075 0,100 0.125 0.150 0.175

(e)

Number of nets

Combinational total power
Total power

Combinational switching power
Number of sequential cells
Number of ports

Net switching power

Number of cells

Total dynamic power

Tatal switching power

Mumber of references

0.0

GB-GAN-600

0.1 0.2 0.3 0.4

()

Figure 5.18 Concept graph presenting the most importance features: (a) GB-WCGAN-200
classifier; (b) GB-GAN-200 classifier; (¢) GB-WCGAN-400 classifier; (d) GB-GAN-400
classifier; (¢) GB-WCGAN-600 classifier; (f) GB-GAN-600 classifier

5.10 Mixed GB-based Classifiers Development

Our next step, was the development of mixed GB-based classifiers for the classification of
our mixed data sets. Again, for the development of our mixed GB-based classifiers we used
and combined a list of four hyperparameters: learning rate, max tree depth, number of
estimators and max features. Specifically, we used a list of learning rate values from 0.05 to
1, a list of number of estimators with values from 10 to 100, a list of max tree depth values
from 1 to 10 and a list of max features values from 1 to 11. In Table 5.15 are presented the
best combination of hyperparameters for each of the six mixed GB-based classifiers. Also,
in Figure 5.19 are presented the most important features for each mixed GB-based classifier.
It is observed that the most important feature for the six classifiers was “number of sequential
cells”. While for the GB-WCGAN-Mixed-based classifiers the next most important feature
was the “combinational total power” and for the GB-GAN-Mixed-based was the “number

of ports”.

Table 5.15 Table with the best values of hyperparameters for the mixed GB-based

classifiers
. Learning Number of Max tree Max
Classifier .
rate estimators depth features
GB-WCGAN-Mixed-200 0.75 40 10 4
GB-GAN-Mixed-200 1 20 9 3
GB-WCGAN-Mixed-400 0.05 50 2 9

76

GB-GAN-Mixed-400 0.05 20 4 8
GB-WCGAN-Mixed-600 0.05 20 6 7
GB-GAN-Mixed-600 0.05 10 5 7

) GB-GAN-Mixed-200
GB-WCGAN-Mixed-200

Net switching power
Number of sequential cells

Total dynamic power Number of sequential cells

Number of nets Total switching power

Total power Number of ports

Number of references. Number of nets
Combinational total power Combinational total power
Number of parts Number of references

Met switching power Combinatianal switching power

Combinational switching power Number of cells

Total switching power Total power

Number of cells Total dynamic power

0.00 0.05 010 015 0.20 025 030 0.35 040 0.60 005 010 015 0.20 025 030 035 040

() (b)

. GB-GAN-Mixed-400
GB-WCGAN-Mixed-400

Number of sequential cells
Mumber of sequential cells

Mumber of references. Number of ports

Combinational tatal power Net switching power

Total power Total power
Number of ports Combinational total power
Total dynamic power Combinational switching power
Number of cells Total switching power
Number of nets Tatal dynamic power

Combinational switching power Number of nets

Total switching power Number of references

Net switching power Number of cells

000 0.05 0.10 013 020 000 005 010 015 020 025 030

() (d)

GB-GAN-Mixed-600

GB-WCGAN-Mixed-600

Number of sequential cells
Mumber of sequential cells

Number of nets Total power
Combinational tatal power Number of ports
Number of ports Total switching power

Total power Number of nets

Mumber of references Combinational total power

Total dynamic power Number of references

Total switching power Total dynamic power

Number of cells Net switching power

Combinational switching power Combinational switching power

Net switching power Number of cells

0.00 0.05 010 015 0.20 025 0.30 0.0 o1 02 03 o4

(e) (f)
Figure 5.19 Concept graph presenting the most importance features: (a) GB-WCGAN-

Mixed-200 classifier; (b) GB-GAN-Mixed-200 classifier; (¢) GB-WCGAN-Mixed-400
classifier; (d) GB-GAN-Mixed-400 classifier; (¢) GB-WCGAN-Mixed-600 classifier; (f)
GB-GAN-Mixed-600 classifier

77

Chapter 6 Results

6.1 New Generated Data Sets Results

Our first step was to compare our six new generated data sets. So, we developed six new
GB-based classifiers, one for each data set. According to Figure 6.1 and Figure 6.2, both for
the training and the evaluation phase, our WCGAN-based data sets enhanced even a little
the performance of the classifiers compared with our GAN-based data sets. Specifically, the
GB-based classifiers for the evaluation phase obtained a 99.6% F1-score for our WCGAN-
200 data set, 99.86% F1-score for our WCGAN-400 data set and 99.94% F1-score for our
WCGAN-600 data set, while for our GAN-200 data set was obtained a 98.37% F1-score,
99.2% F1-score for our GAN-400 data set and 99.49% F1-score for our GAN-600 data set.
Additionally, from the above, it can be observed that the performance of the classifiers was
affected, and also by the size of the data set. Specifically, the data sets with more samples
enhanced the performance of the classifier compared with the data sets with fewer samples,

for both WCGAN-based and GAN-based data sets.

100%
90%

100%

80%
70%
60%
50%
40%

30%
20%
10%

0%

WCGAN-200 GAN-200 WCGAN-400 GAN-400 WCGAN-600 GAN-600

B ACCURACY mPRECISION mRECALL F1-SCORE

Figure 6.1 Histograms of the performance of our new GB-based classifiers on our new

generated training sets.

79

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

WCGAN-200 GAN-200 WCGAN-400 GAN-400 WCGAN-600 GAN-600

B ACCURACY mPRECISION mRECALL F1-SCORE
Figure 6.2 Histograms of the performance of our new GB-based classifiers on our new

generated test sets.

6.2 Mixed Data Sets Results

Our next step was to compare our six mixed data sets. As previously mentioned, mixed data
sets consisted of the new generated samples from our WCGAN-based and GAN-based
generative models, respectively, and the initial real training data samples from our REAL-
880 data set. According to Figure 6.3 and Figure 6.4 emerged the same conclusions as in the
comparison of the new generated data sets. Our best GB-classifier was the classifier that was
developed based on the WCGAN-Mixed-600 data set. Specifically, our new mixed GB-
based classifiers for the evaluation phase achieved a 95.08% F1-score for our WCGAN-
Mixed-200 data set, 97.39% F1-score for our WCGAN-Mixed-400 data set and 98.26% F1-
score for our WCGAN-Mixed-600 data set, while for our GAN-Mixed-200 data set was
obtained a 94.59% F1-score, 97.61% F1-score for our GAN-Mixed-400 data set and 98.11%
F1-score for our GAN-Mixed-600 data set.

80

100%

so% B 3) s~;
70%
60%
50%
40%
30%
20%
10%

0%
ed200 4200 4400 4400 4600 . 4600
xed-Z xed xed xed xed xed
WCGANMET G AN-MPE D NV G aN-NE G AN-MYET G W
B ACCURACY mPRECISION mRECALL m™F1-SCORE
Figure 6.3 Histograms of the performance of our new GB-based classifiers on our mixed

training sets.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

98.29%

. .4.200 . .4.200 . 4-400 . .4-400 . .4.600
ed-20 ed-2 ed ed ed
MV Gan- \NCGN\\-N\“‘ GAN-M \NCGN\"N\N G

2 ined-6

W CGAN'

B ACCURACY MEPRECISION mRECALL mF1-SCORE
Figure 6.4 Histograms of the performance of our new GB-based classifiers on our mixed

test sets.

6.3 All Data Sets Results

According to our results, our best new classifiers are based on WCGAN-Mixed-600 and

GAN-Mixed-600 data sets. These newly generated data sets, in combination with our real

81

training data set, managed to increase the F1-score for our new best-performing GB-based

classifiers by 32.18% and 32.03%, respectively (Figure 6.5).

To be able to distinguish extra details between the WCGAN-Mixed-600 and GAN-Mixed-
600 data sets we used ROC and Precision—Recall curves. Each GB-based classifier of each
data set was tested with the test sets of each other. According to Figure 6.6, it can be observed
that our WCGAN-600 (Figure 6.6 c,d) and WCGAN-Mixed-600 (Figure 6.6 g,h) data sets
significantly enhanced the classification procedure compared with our GAN-600 (Figure 6.6
e,f) and GAN-Mixed-600 data sets (Figure 6.6 i,j). Specifically, our GB-WCGAN-Mixed-
600 classifier, compared with the GB-GAN-Mixed-600 classifier, was able to classify with
better performance 99% AUC and 99% AP for not only the GAN-Mixed-600 data set but
also the REAL-880 data set, with 75% AUC and 16% AP compared with the GB-CGAN-
Mixed-600 classifier, which obtained 70% AUC and 41% AP for the WCGAN-Mixed-600
data set and 68% AUC and only 9% AP for the REAL-880 data set. So, our new best
classifier was the GB-WCGAN-Mixed-600.

“Q,c 67'00 JIA NI NI LI 6600
(s W W d\\‘he N\\'Fe N\\‘Fe @*

PN T W W
R T L o

BACCURACY mPRECISION mRECALL m F1-SCORE
Figure 6.5 Histograms of the performance of our 13 GB-based classifiers on our 13 test

sets.

82

10

Sensitivity

0.0

14
EY

Sensitivity
o
&

0.2

0.0

Lo

Sensitivity

0.0

1.0

0.8

)
£

Sensitivity
=
=

0.2

0.0

REAL-880 AUC REAL-880 AP

1.0
0.8

£ 0.6

L

2

8

& 04

—— GB-REAL-880 (AUC = 0.62} —— GB-REAL-880 (AP = 0.14)

—— GB-GAN-600 (AUC = 0.54) 0.2 —— GB-GAN-600 (AP = 0.47)
GB-WCGAN-600 (AUC = 0.91) GB-WCGAN-600 (AP = 0.94)
GB-GAN-Mixed-600 (AUC = 0.44) GB-GAN-Mixed-600 (AP = 0.28)
GB-WCGAN-Mixed-600 (AUC = 0.49) 0.0 GB-WCGAN-Mixed-600 (AP = 0.33)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
1-5pecificity Recall
(a) (b)
WCGAN-600 AUC WCGAN-600 AP
e 1.0 -

0.8

£ 0.6

°

2

5 —

& 04

—— GB-REAL-880 (AUC = 0.59) —_— GB—REAL—BBO]AP =0.03)

—— GB-GAN-600 {AUC = 0.07) 0.2 —— GB-GAN-600 (AP = 0.32)
GB-WCGAN-600 (AUC = 1.00) GB-WCGAN-800 (AP = 1.00)
GB-GAN-Mixed-600 (AUC = 0.76) GB-GAN-Mixed-600 (AP = 0.55)
GB-WCGAN-Mixed-600 {AUC = 0.83) oo M GB-WCGAN-Mixed-600 (AP = 0.79)

0.9 0.2 0.4 0. 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
1-Specificity Recall
() (d)
GAN-600 AUC GAN-600 AP
1.0 Iy
0.8
c 0.6
o
n
=3
g
a 0.4
- N

—— GB-REAL-880 (AUC = 0.25) —— GB-REAL-880 (AP = 0.02)

—— GB-GAN-600 (AUC = 1.00) 0.2 —— GB-GAN-600 (AP = 1.00)
GB-WCGAN-600 (AUC = 0.33) GB-WCGAN-600 (AP = 0.42)
GB-GAN-Mixed-600 (AUC = 0.87) GB-GAN-Mixed-600 (AP = 0.60)
GB-WCGAN-Mixed-600 (AUC = 0.56) 0.0 GB-WCGAN-Mixed-600 (AP = 0.31)

0.0 0.2 0.4 0.6 0.8 Lo 0.0 02 0 06 08 10
1-Specificity Recall

(e) ()

WCGAN-Mixed-600 AUC WCGAN-Mixed-600 AP

10
0.8

£0.6

2

2

=}

o

& o4

—— GB-REAL-880 {AUC = 0.75) —— GB-REAL-880 (AP = 0.16)

—— GB-GAN-600 (AUC = 0.70) 0.2 —— GB-GAN-600 (AP = 0.65)
GB-WCGAN-600 (AUC = 0.77) GB-WCGAN-600 {AP = 0.78)
GB-GAN-Mixed-600 (AUC = 0.99) GB-GAN-Mixed-600 (AP = 0.99)
GB-WCGAN-Mixed-600 (AUC = 1.00) 0.0 GB-WCGAN-Mixed-600 (AP = 1.00)

0.0 0.z 0.8 1.0

83

0.0 0.2 0.4

Recall

(h)

0.6 0.8 1.0

GAN-Mixed-600 AUC ‘GAN-Mixed-600 AP

"
E
-
EY

o o
£ £
o e
o ®

> — 2
n o w e s
c . o — e
0 0. 5 h
Soa = o 0.4 -
S — —— GB-REAL-880 {AUC = 0.68) fP——— —— GB-REAL-880 (AP = 0.09)
0.2 o —— GB-GAN-600 (AUC = 0.57}) 0.2 —— GB-GAN-600 (AP = 0.74)
/."' GB-WCGAN-600 (AUC = 0.51) GB-WCGAN-600 (AP = 0.55)
. i GB-GAN-Mixed-600 (AUC = 1.00) GB-GAN-Mixed-600 (AP = 1.00}
004 = GB-WCGAN-Mixed-600 (AUC = 0.70) 0.0 GB-WCGAN-Mixed-600 (AP = 0.41)
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity Recall

(1) ()
Figure 6.6 Concept graph presenting ROC and Precision-Recall curves: (a) ROC curve for

all the GB-based classifiers for the REAL-880 data set; (b) Precision—Recall curve for all
the GB-based classifiers for the REAL-880 data set; (c) ROC curve for all the GB-based
classifiers for the WCGAN-600 data set; (d) Precision—Recall curve for all the GB-based
classifiers for the WCGAN-600 data set; (¢) ROC curve for all the GB-based classifiers for
the GAN-600 data set; (f) Precision—Recall curve for all the GB-based classifiers for the
GAN-600 data set; (g) ROC curve for all the GB-based classifiers for the WCGAN-Mixed-
600 data set; (h) Precision—Recall curve for all the GB-based classifiers for the WCGAN-
Mixed-600 data set; (1) ROC curve for all the GB-based classifiers for the GAN-Mixed-600
data set; (j) Precision—Recall curve for all the GB-based classifiers for the GAN-Mixed-600

data set

6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-
880 Classifier

To evaluate the effectiveness of our new GB-WCGAN-Mixed-600 classifier, we tested our

new classifier in the test set of our REAL-880 classifier.

As a result, as shown in Figure 6.7, our GB-WCGAN-Mixed-600 classifier for the REAL-
880 test set performed with 98% Accuracy, 74% Precision, 74.5% Recall and 74.25% F1-
score, while the GB-REAL-880 classifier for this set performed with 97.72% Accuracy,
74.13% Precision, 62.20% Recall and 66.08% F1-score. With our new GB-WCGAN-
Mixed-600 classifier we had an 8.17% increase in performance, which is satisfactory due to

the lack of a samples test set.

So, from the above our goal of generating new circuit samples based on area, power and time
analysis features from the GLN phase is validated, which would enhance the development

of a robust ML-based classifier, for the classification of TF and TI circuits. Our new

84

generated data sets, large in size, enhanced the classification of TF and TI circuits.
Specifically, throughout this process our first goal was to develop new generated data sets
to observe how significantly or not our new data sets could enhance the classification of TF
and TI circuits at GLN. Additionally, our next goal was to evaluate if our new data sets could
be used as a solution for the problem of a lack of samples, from which the field of
countermeasures against HTs suffers. The experimental results prove the achievement of our
goals, as our new WCGAN-Mixed-600 data set managed to develop a more effective

classification model for the classification of TF and TI circuits at the GLN phase of ASICs.

100%
90%
80%
70%
60%

74.25%

50%
40%
30%
20%

10%

0%
REAL-880 WCGAN-Mixed-600

mACCURACY mPRECISION mRECALL F1-SCORE

Figure 6.7 Histograms of the performance of our new best-performing GB-WCGAN-
Mixed-600 classifier compared with our GB-REAL-880 classifier on the REAL-880 test

set.

6.5 Comparison to Existing Methods

Our final step was to compare our best performing GB-WCGAN-Mixed-600 classifier with
existing methods. As be mentioned we named GB-WCGAN-Mixed-600 classifier as
ATLAS. So, we compared our ATLAS with two studies that can be found in the literature
that is based on SVM [24] and RF classifiers [25].

85

We chose 15 circuits that existing methods were tested on, to make the comparison with our
model fair Figure 6.8 and Table 6.1. Our ATLAS model exhibits the highest performance

compared to existing methods, with an average Precision and F1-score of 100%.

It is worth mentioning that our ATLAS classifier for HT classification is based on area and
power feature values that are extracted from the whole circuit. Therefore, we provide a
prediction for the entire circuit, labeling it as TF or TI. Both existing studies however, break
each circuit down to the level of nets. Each net is treated as an individual sample with its
own set of extracted features. Thus, Table 6.1 includes performance values with decimal

points for [24] and [25], while we provide a value for each circuit (i.e., RS232).

100%

X
=)
90% S
80%
70% §
<
~
60%
50%
40%
30%
20%
10% N N
o N
wn
0% .
Hasegawa et al [34] Hasegawa et al [35] ATLAS

H PRECISION F1-SCORE

Figure 6.8 Histograms with the performance comparison between existing approaches and

our approach ATLAS.

86

Table 6.1 Table with the comparison of our method with existing methods for the same

benchmark

Test Circuits Precision F1-Score
[24] [25] ATLAS [24] [25] ATLAS
RS232-T1000 11.5% 92.3% 100% 19% 96% 100%
RS232-T1100 3.1% 78.3% 100% 59% 61% 100%
RS232-T1200 3.4% 100% 100% 6.5% 93.8% 100%
RS232-T1300 3.5% 100% 100% 6.7% 100% 100%
RS232-T1400 4.1% 100% 100% 7.8% 98.9% 100%
RS232-T1500 4.1% 97.4% 100% 7.9% 96.1% 100%
RS232-T1600 3.5% 90% 100% 6.7% 91.5% 100%
s15850-T100 2.9% 95.5% 100% 5.7% 85.7% 100%
$35932-T100 0.5% 100% 100% 1.1% 84.6% 100%
$35932-T200 0.6% 100% 100% 1.2% 15.4% 100%
$35932-T300 0.4% 96.8% 100% 0.7% 88.2% 100%
s38417-T100 0.8% 100% 100% 1.7% 50% 100%
s38417-T200 0.8% 100% 100% 1.5% 63.6% 100%
s38417-T300 2.6% 100% 100% 5.1% 85.7% 100%
s38584-T100 0.3% 333% 100% 0.6% 9.1% 100%
Mean 2.81% 92.2% 100% |5.21% 74.6% 100%

87

Chapter 7 Conclusions and Future Work

The HT detection field has been at the forefront of hardware security for the last two decades.
As the technological advancements require an ever-increasing complexity level of ICs, the
same trend can be observed in HT-based attacks, in their sophistication and elusiveness that
prevents detection at pre-silicon stages. However, the pace of advancement has not been the
same for the HT detection field, since the development of robust HT detection methods
requires abundant data in the form of HT-free and HT-infected circuits. This major obstacle
can be attributed to the lack of freely available IC designs, since the majority of ICs are
protected by IP rights. Public repositories such as Trust-HUB indeed provide free designs;
however, the supported ICs are limited both in terms of absolute numbers and in

function/size diversity.

To alleviate the imbalance problem in freely accessible IC design repositories, we propose
GAINESIS, anovel approach for generating synthetic HT-free and HT-infected GLN feature
vectors in ASICs from a WCGAN-based generative model and high-quality area and power
analysis features extracted by the Design Compiler NXT tool. Balanced synthetic data sets
of different sizes were generated and utilized to train several ML algorithms that are
frequently being applied in the HT detection field. This approach enabled us to evaluate
GAINESIS and extract results showing that our method can be effective in generating
synthetic feature vectors that can be used for training ML models, which can generalize the
original Trust-HUB test set and perform better than the models trained on the original

imbalanced data.

Even though GAINESIS is a novel approach that was able to marginally improve (~8% in
terms of F1 score) the performance of the original test set, it has the potential to open new
research avenues for the HT detection field, as it can also be applied in other pre-silicon IC
production phases such as RTL, P&R and GDSII. However, GAINESIS cannot remedy the
problem of the lack of numbers and diversity in terms of size and function that is present in
Trust-HUB and other freely accessible repositories. To have a better understanding of
GAINESIS’s ability to provide high-quality synthetic data, we need to assemble a
significantly larger and more diverse design set, and more importantly, designs that are
derived from real-world applications. For small laboratories, this is a costly and extremely

time-consuming effort. Instead, a consortium-level initiative needs to be established where

89

laboratories and companies from all over the world can contribute to this cause in a

crowdsourcing fashion, with the clear purpose of generating large and diverse data sets.

In the future, we will create our own small-in-size circuits, aiming to solve the lack of
diversity that is present in Trust-HUB, and through these circuits our GAINESIS tool will
be upgraded. In addition, we believe that a more efficient strategy for the detection and
mitigation of HT combines different techniques that complement each other. Therefore, we
will combine GAINESIS with other run-time and test-time techniques, such as the works in
[158][159][160] Our GAINESIS tool is available through this link: https://caslab.e-
ce.uth.gr/ToolsandDatabases.html.

90

References

[1]

[2]

[7]

F. Plessas and G. Kalivas, “A subharmonically injected phase-locked loop for 5-GHz
applications”, Microwave and Optical Technology Letters, 2006, vol. 48, pp. 2158-
2162, doi: 10.1002/mop.21888.

F. Plessas, A. Papalambrou, and G. Kalivas, “Subharmonic injection-locking and self-
oscillating mixer”, In Proceedings of the 2007 IEEE International Symposium on
Circuits and Systems, New Orleans, LA, USA, 27-30 May 2007, doi:
10.1109/ISCAS.2007.377952.

E. Lourandakis, F. Plessas, and G. Kalivas, “A 0.5 - 5.5 GHz Distributed Low Noise
Amplifier”, ECTI Transactions on Electrical Engineering and Electronics and

Communication, 2008, vol. 6, no. 1, pp. 26-31

F. C. Plessas, A. Papalambrou, and G. Kalivas, “A 5-GHz subharmonic injection-
locked oscillator and self-oscillating mixer”, IEEE Transactions on Circuits and
Systems I1I: Express Briefs, 2008, wvol. 55, pp. 633-637, doi:
10.1109/TCSII.2008.921575.

A. Tsitouras and F. Plessas, “Ultra wideband, low-power, 3-5.6 GHz, CMOS voltage-
controlled oscillator”, Microelectronics Journal, 2009, vol. 40, pp. 897-904, doi:
10.1016/j.mejo.2009.01.009.

A. Tsitouras and F. Plessas, “Ultra-wideband, low-power, inductorless, 3.1-4.8 GHz,
CMOS VCO?”, Circuits, Systems, and Signal Processing, 2011, vol. 30, no. 2, pp. 263-
285, doi: 10.1007/s00034-010-9220-6.

F. Plessas, “A study of superharmonic injection locking in multiband frequency
dividers”, International Journal of Circuit Theory and Applications, 2011, vol. 39,
pp. 397-410, doi: 10.1002/cta.644.

F. Plessas, A. Tsitouras, and G. Kalivas, “Phase noise characterization of subharmonic
injection locked oscillators”, [International Journal of Circuit Theory and

Applications, 2011, vol. 39, pp 791-800, doi: 10.1002/cta.734.

A. Tsitouras, F. Plessas, and G. Kalivas, “A linear, ultra wideband, low-power, 2.1-5

GHz, VCO”, International Journal of Circuit Theory and Applications, 2011, vol. 39,

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

pp. 823-833, doi: 10.1002/cta.670.

F. Plessas, A. Tsitouras, and G. Kalivas, “5-GHz fully differential multifunctional
circuit”, International Journal of Electronics, 2012, vol. 99, pp. 1317-1322, doi:
10.1080/00207217.2012.669711.

A. Alexandropoulos, E. Davrazos, F. Plessas, and M. Birbas, “A novel 1.8 V, 1066
Mbps, DDR2, DFI-compatible, memory interface”, In Proceedings of the 2010 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Lixouri, Greece, 5-7 July
2010, doi: 10.1109/ISVLSI.2010.49.

A. Alexandropoulos, F. Plessas, M. Birbas, and S. A. Analogies, “A dynamic DFI-
compatible strobe qualification system for double data rate (DDR) physical
interfaces”, In Proceedings of the 2010 17th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Athens, Greece, 12-15 December 2010,
doi: 10.1109/ICECS.2010.5724507.

G. Giannakas, F. Plessas, G. Nassopoulos, and G. Stamoulis, “A 2.45GHz power
harvesting circuit in 90nm CMOS”, In Proceedings of the 2010 17th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), Athens,
Greece, 12-15 December 2010, doi: 10.1109/ICECS.2010.5724642.

F. Plessas and N. Terzopoulos, “60 GHz Millimeter-Wave WLANs and WPANS:
Introduction, system design, and PHY layer challenges”, System-Level Design

Methodologies for Telecommunication, 2014, pp. 63-78.

N. Terzopoulos, C. Laoudias, F. Plessas, G. Souliotis, S. Koutsomitsos, and M.
Birbas, “A 5-Gbps USB3.0 transmitter and receiver linear equalizer”, International
Journal of Circuit Theory and Applications, 2015, vol. 43, pp. 900-916, doi:
10.1002/cta.1982.

S. Bhunia et al., “Protection against hardware trojan attacks: Towards a
comprehensive solution”, IEEE Design & Test, 2013, vol. 30, pp. 6-17, doi:
10.1109/MDT.2012.2196252.

S. Mitra, H. S. P. Wong, and S. Wong, “The Trojan-proof chip”, IEEE Spectrum,
2015, vol. 52, pp. 46-51, doi: 10.1109/MSPEC.2015.7024511.

A. L. Samuel, “Some studies in machine learning using the game of checkers”, IBM

Journal of Research and Development, 2000, vol. 3, pp. 210-229, doi:

92

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

10.1147/rd.441.0206.

Y. LeCun, Y. Bengio, G. Hinton , “Deep learning”, Nature, 2015, vol. 521, pp. 436-
444, doi:10.1038/nature14539.

G. K. Georgakilas, A. Grioni, K. G. Liakos, E. Chalupova, F. C. Plessas, and P.
Alexiou, “Multi-branch Convolutional Neural Network for Identification of Small
Non-coding RNA genomic loci”, Scientific Reports, 2020, vol. 10, pp. 9486, doi:
10.1038/s41598-020-66454-3.

X. E. Pantazi, D. Moshou, and A. A. Tamouridou, “Automated leaf disease detection
in different crop species through image features analysis and One Class Classifiers”,
Computers and Electronics in Agriculture, 2019, vol. 156, pp. 96-104, doi:
10.1016/j.compag.2018.11.005.

K. G. Liakos, G. K. Georgakilas, S. Moustakidis, N. Sklavos, and F. C. Plessas,
“Conventional and machine learning approaches as countermeasures against

hardware trojan attacks”, Microprocessors and Microsystems, 2020, vol. 79, pp.

103295, doi: 10.1016/j.micpro.2020.103295.

K. G. Liakos, G. K. Georgakilas, S. Moustakidis, P. Karlsson, and F. C. Plessas,
“Machine Learning for Hardware Trojan Detection: A Review”, In Proceedings of
the 2019 Panhellenic Conference on Electronics & Telecommunications (PACET),
Volos, Greece, 8-9 November 2019, doi: 10.1109/PACET48583.2019.8956251.

K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, ‘“Hardware Trojans
classification for gate-level netlists based on machine learning”, In Proceedings of the
2016 IEEE 22nd International Symposium on On-Line Testing and Robust System
Design (IOLTS), Sant Feliu de Guixols, Spain, 4-6 July 2016, doi:
10.1109/I0LTS.2016.7604700.

K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction at gate-
level netlists and its application to hardware-Trojan detection using random forest
classifier”, In Proceedings of the 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), Baltimore, MD, USA, 28-31 May 2017, doi:
10.1109/ISCAS.2017.8050827.

T. Inoue, K. Hasegawa, M. Yanagisawa, and N. Togawa, “Designing hardware trojans

and their detection based on a SVM-based approach”, In Proceedings of the 2017

93

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE 12nd International Conference on ASIC (ASICON), Guiyang, China, 25-28
October 2017, doi: 10.1109/ASICON.2017.8252600.

K. G. Liakos, G. K. Georgakilas, and F. C. Plessas, “Hardware Trojan Classification
at Gate-level Netlists based on Area and Power Machine Learning Analysis”, In
Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Tampa, FL, USA, 7-9 July 2021, doi: 10.1109/ISVLSI51109.2021.00081.

H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis and trust
benchmarks development”, In Proceedings of the 2013 IEEE 3l1st International
Conference on Computer Design (ICCD), Asheville, NC, USA, 6-9 October 2013,
doi: 10.1109/ICCD.2013.6657085.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of Hardware Trojans and Maliciously Affected Circuits”, Journal of

Hardware and Systems Security, 2017, pp. 85-102, doi: 10.1007/s41635-017-0001-6.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for

improved quality, stability, and variation”, arxiv, 2018, arxiv:1710.10196.

H. Zhang et al., “StackGAN: Text to Photo-Realistic Image Synthesis with Stacked
Generative Adversarial Networks”, In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22-29 October 2017, doi:
10.1109/ICCV.2017.629.

Y. Li, S. Liu, J. Yang, and M. H. Yang, “Generative face completion”, In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 5892-5900, doi: 10.1109/CVPR.2017.624.

H. Zhang, V. Sindagi, and V. M. Patel, “Image De-Raining Using a Conditional
Generative Adversarial Network”, IEEE Transactions on Circuits and Systems for
Video Technology, 2020, vol. 30, pp- 3943-3956, doi:
10.1109/TCSVT.2019.2920407.

S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:
Threat analysis and countermeasures”, Proceedings of the IEEE, 2014, vol. 102, pp.
1229-1247, doi: 10.1109/JPROC.2014.2334493.

M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith, “Overcoming

an untrusted computing base: Detecting and removing malicious hardware

94

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

automatically”, In Proceedings of the 2010 IEEE Symposium on Security and Privacy
(SSP), Oakland, CA, USA, 16-19 May 2010, doi: 10.1109/SP.2010.18.

S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and
implementing malicious hardware”, In Proceedings of the Ist Usenix Workshop on
Large-Scale Exploits and Emergent Threats (UWLSEET), San Francisco, CA, USA
15 April 2008.

M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection”, IEEE Design and Test of Computers, 2010, vol. 27, pp. 10-25, doi:
10.1109/MDT.2010.7.

R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware trojans”, Computer, 2010, vol. 43, pp. 39-46,
doi: 10.1109/MC.2010.299.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity”, The bulletin of mathematical biophysics, 1943, vol. 5, pp. 115-133,doi:
10.1007/BF02478259.

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain”, Psychological Review, 1958, vol. 65, pp. 386-408, doi:
10.1037/h0042519.

S. K. Pal and S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and Classification”, I[EEE
Transactions Neural Networks, 1992, vol. 3, pp. 683-697, doi: 10.1109/72.159058.

H. J. Kelley, “Gradient Theory of Optimal Flight Paths”, American Rocket Society
Journal, 1960, vol. 30, doi: 10.2514/8.5282.

M. Riedmiller and H. Braun, “Direct adaptive method for faster backpropagation
learning: The RPROP algorithm”, In Proceedings of the IEEE International
Confernce on neural Networks (ICNN), San Francisco, CA, USA, 28 March-1 April
1993, doi: 10.1109/icnn.1993.298623.

R. Hecht-Nielsen, “Applications of counterpropagation networks”, Neural Networks,

1988, vol. 1. pp. 131-139, doi: 10.1016/0893-6080(88)90015-9.

D. Broomhead, D. Lowe, “Multivariable Functional Interpolation and Adaptive

Networks”, Complex Systems, 1988, vol. 2, pp. 321-355.

95

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. Melssen, R. Wehrens, and L. Buydens, “Supervised Kohonen networks for
classification problems”, Chemometrics and Intelligent Laboratory Systems, 2006,

vol. 83, pp. 99-113, doi: 10.1016/j.chemolab.2006.02.003.

J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities.”, Proceedings of the National Academy Sciences of the U. S.

A., 1982, vol. 79, pp. 2554-2558, doi: 10.1073/pnas.79.8.2554.

D. F. Specht, “A General Regression Neural Network”, IEEE Transactions on Neural
Networks, 1991, vol. 2, pp. 568-576, doi: 10.1109/72.97934.

C. Y. Liou, W. C. Cheng, J. W. Liou, and D. R. Liou, “Autoencoder for words”,
Neurocomputing, 2014, vol. 139, pp. 84-96, doi: 10.1016/j.neucom.2013.09.055.

J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, /[EEE
Transactions on Systems, Man, and Cybernetics, 1993, vol. 23, pp. 665-685, doi:
10.1109/21.256541.

G. Bin Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and
applications”, Neurocomputing, 2006, vol. 70, pp. 489-501, doi:
10.1016/j.neucom.2005.12.126.

J. Cao, Z. Lin, and G. Bin Huang, “Self-adaptive evolutionary extreme learning
machine”, Neural Processing Letters, 2012, vol. 36, pp. 285-305, doi:
10.1007/s11063-012-9236-y.

J. Pearl, “Probabilistic reasoning in intelligent systems: Networks of plausible

inference”, Morgan Kaufmann Publishers, 1988, doi: 10.5555/534975.

R. E. Neapolitan, “Models for reasoning under uncertainty”, Applied Artificial
Intelligence, 2007, vol. 1, pp. 337-336, doi: 10.1080/08839518708927979.

A. Ligeza, “Artificial Intelligence: A Modern Approach”, Neurocomputing, 1995,
vol. 9, pp. 215-218, doi: 10.1016/0925-2312(95)90020-9.

K. Ali, A. Jamali, M. Abbas, K. Ali Memon, and A. Aleem Jamali, “Multinomial
Naive Bayes Classification Model for Sentiment Analysis”, IJCSNS International
Journal of Computer Science and Network Security, 2019, vol. 19, pp. 62-67.

M. Ontivero-Ortega, A. Lage-Castellanos, G. Valente, R. Goebel, and M. Valdes-

Sosa, “Fast Gaussian Naive Bayes for searchlight classification analysis”,

96

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Neuroimage, 2017, vol. 163, pp. 471-479, doi: 10.1016/j.neuroimage.2017.09.001.

R. C. Tryon, “Communality of a variable: Formulation by cluster analysis”,

Psychometrika, 1957, vol. 22, pp. 241-260, doi: 10.1007/BF02289125.

S. P. Lloyd, “Least Squares Quantization in PCM”, [EEE Transactions on
Information Theory, 1982, vol. 28, pp. 129-137, doi: 10.1109/TIT.1982.1056489.

S. C. Johnson, “Hierarchical clustering schemes”, Psychometrika, 1967, vol. 32, pp.

241-254, doi: 10.1007/BF02289588.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from
Incomplete Data Via the EM Algorithm”, Journal of the Royal Statistical Society.
Series B, 1977, vol. 39, pp. 1-22, doi: 10.1111/j.2517-6161.1977.tb01600.x.

Y. Yuan, X. Chen, X. Chen, and J. Wang, “Segmentation Transformer: Object-
Contextual Representations for Semantic Segmentation”, Computer Vision — ECCV,

2020, pp. 173-190, doi:10.1007/978-3-030-58539-6_11.

H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution
discrepancy”, Advances in Neural Information Processing Systems 32 (NeurIPS

2019), 2019.

M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection”,
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10781-10790, doi: 10.1109/CVPR42600.2020.01079.

W. A. Belson, “Matching and Prediction on the Principle of Biological
Classification”, Journal of the Royal Statistical Society. Series C (Applied Statistics),
1959, vol. 8, pp. 65-75, doi: 10.2307/2985543.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and
regression trees”, 2017, pp. 368, doi: 10.1201/9781315139470.

G. V. Kass, “An Exploratory Technique for Investigating Large Quantities of
Categorical Data”, Journal of the Royal Statistical Society. Series C (Applied
Statistics), 1980, vol. 29, pp. 119-127, doi: 10.2307/2986296.

A. M. Hormann, “Programs for machine learning Part I”, Information and Control,

1962, vol. 5, pp. 2347-367, doi: 10.1016/S0019-9958(62)90649-6.

Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, 2015, vol 521, pp.

97

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

436-444, doi: 10.1038/nature14539.

N. Milosevic, “Introduction to Convolutional Neural Networks”, 2020, doi:

10.1007/978-1-4842-5648-0.

R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines”, In Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics (ICAIS),
2009, pp. 448-455.

Y. Hua, J. Guo, and H. Zhao, “Deep Belief Networks and deep learning”, In
Proceedings of the 2015 International Conference on Intelligent Computing and
Internet of Things (ICICIT), 2015, doi: 10.1109/ICAIOT.2015.7111524.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, “Stacked
denoising autoencoders: Learning Useful Representations in a Deep Network with a

Local Denoising Criterion”, The Journal of Machine Learning Research, 2010, vol.

11, pp. 3371-3408.

L. R. Medsker and L. C. Jain, “Recurrent Neural Networks Design and Applications”,
Journal of Chemical Information and Modeling, 2013.

S. Hochreiter and J. Schmidhuber, “Long Short Term Memory. Neural Computation”,
Neural Computation, 1997, vol. 9, pp. 1735-1780, doi: 10.1162/neco.1997.9.8.1735.

K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space”,
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
1901, vol. 2, pp. 559-572, doi: 10.1080/14786440109462720.

A. Leguina, “A primer on partial least squares structural equation modeling (PLS-
SEM)”, International Journal of Research & Method in Education, 2015, vol. 38, pp.
220-221, doi: 10.1080/1743727x.2015.1005806.

P. Sarkar, “What is LDA: Linear Discriminant Analysis for Machine Learning”,
Knowledge Hut, 2019.

R. E. Schapire, “Explaining adaboost”, Empirical Inference: Festschrift in Honor of
Viadimir N. Vapnik, 2013, pp. 37-52, doi: 10.1007/978-3-642-41136-6 5.

L. Breiman, “Bagging predictors”, Machine Learning, 1996, vol. 24, pp 123-140, doi:
10.1007/bf00058655.

R. E. Schapire, “A brief introduction to boosting”, In Proceedings of the 16th

98

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

International Joint Conference on Artificiasl Intelligent (IJCAI), 1999.

J. H. Friedman, “Greedy function approximation: A gradient boosting machine”, The

Annals of Statistics, 2001, vol. 29, pp. 1189-1232, doi: 10.1214/a0s/1013203451.

L. Breiman, “Random forests”, Machine Learning, 2001, vol. 45, pp. 5-32, doi:
10.1023/A:1010933404324.

I. Goodfellow et al., “Generative adversarial networks”, Communications of the

ACM, 2020, vol. 63, pp. 139-144, doi: 10.1145/3422622.

M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets”, arxiv, 2014,

vol. 1, pp. 1-7, arxiv: 1411.1784.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN”, arxiv, 2017, vol.1, pp
1-32, arxiv:1701.07875.

S. Qin and T. Jiang, “Improved Wasserstein Conditional Generative Adversarial
Network Speech Enhancement”, EURASIP Journal on Wireless Communications and
Networking, 2018, doi: 10.1186/s13638-018-1196-0.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks”, In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 18-20 June 2019, doi:
10.1109/CVPR.2019.00453.

J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks”, In Proceedings of the International
Conference on Computer Vision (ICCV), Venice, Italy, 22-29 October 2017, pp.
2223-2232, doi: 10.1109/ICCV.2017.244.

E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination:
Consistency Properties”, International Statistical Review / Revue Internationale de

Statistique, 1989, vol. 57, p. 238, doi: 10.2307/1403797.

T. Kohonen, “Statistical Pattern Recognition Revisited”, Advanced Neural

Computers, 1990, pp. 137-144, doi: 10.1016/B978-0-444-88400-8.50020-0.

C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted Learning”, Artificial
Intelligence Review, 1997, vol. 11, pp. 11-73, doi: 10.1007/978-94-017-2053-3 2.

C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning, 1995, vol.

99

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

20, pp. 273-297, doi: 10.1023/A:1022627411411.

T. Kohonen, “The self-organizing map,” Neurocomputing, 1998, vol. 21, pp. 1-6, doi:
10.1016/S0925-2312(98)00030-7.

J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. 1. Language, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”, In
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Naacl-

HIt), Minneapolis, MI, USA, June 2019, doi: 10.18653/v1/N19-1423.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet:
Generalized autoregressive pretraining for language understanding”, Advances in
Neural Information Processing Systems 32 (NeurlPS 2019), 2019, doi:
10.48550/arXiv.1906.08237.

K. Park, R. Rothfeder, S. Petheram, F. Buaku, R. Ewing, and W. H. Greene, “Linear

regression”, Basic Quantitative Research Methods for Urban Planners, 2020.

D. R. Cox, “The Regression Analysis of Binary Sequences”, Journal of the Royal
Statistical Society. Series B, 1959, vol. 21, pp. 238-238, doi: 10.1111/;.2517-
6161.1959.tb00334.x.

G. Hutcheson, “Ordinary Least-Squares Regression”, The SAGE Dictionary of
Quantitative Management Research, 2011, pp. 224-228.

J. R. Quinlan, “Learning with continuous classes”, In Proceedings of the Australian
Joint Conference on Artificial Intelligence, Hobart, Australia, 16-18 November 1992,
pp. 343-348.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots”,
Journal of the American Statistical Association, 1979, vol. 74, pp. 829-836, doi:
10.1080/01621459.1979.10481038.

A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”, Technometrics, 1970, vol. 42, pp. 80-86, doi:
10.1080/00401706.1970.10488634.

R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso”, Journal of the
Royal Statistical Society. Series B, 1996, vol. 58, pp. 267-288, doi: 10.1111/j.2517-
6161.1996.tb02080.x.

100

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

B. Efron et al., “Least angle regression”, Annuals of Statistics, 2004, vol. 32, pp. 407-
499, doi: 10.1214/009053604000000067.

W. Han et al., “ContextNet: Improving convolutional neural networks for automatic
speech recognition with global context”, In Proceedings of the Conference of the
International Speech communication Association (INTERSPEECH), Shanghai,
China, 25-29 October 2020, doi: 10.21437/Interspeech.2020-2059.

M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light Gated Recurrent Units
for Speech Recognition”, IEEE Transactions on Emerging Topics in Computational

Intelligence, 2018, vol. 1, doi: 10.1109/TETCI.2017.2762739.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
In Proceedings of the IEEE Conference on Computer Vision and Pattern (CVPR), Las
Vegas, NE, USA, 26 June - 1 July 2016, doi: 10.1109/CVPR.2016.90.

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan detection
using IC fingerprinting”, In Proceedings of the IEEE Symposium on Security and
Privacy (SP '07), Berkeley, CA, USA, 20-23 May 2007, doi: 10.1109/SP.2007.36.

R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “MERO: A
statistical approach for hardware Trojan detection”, Lecture Notes in Compuer

Science, 2009, vol. 5747 LNCS, pp. 396410, doi: 10.1007/978-3-642-04138-9 28.

H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique for Improving
Hardware Trojan Detection and Reducing Trojan Activation Time”, [EEE
Transactions on Very Large Scale Integration Systems, vol. 20, pp. 112—-125, Jan.
2012, doi: 10.1109/TVLSI.2010.2093547.

C. Bao, D. Forte, and A. Srivastava, “On application of one-class SVM to reverse
engineering-based hardware Trojan detection”, In Proceedings of the 15th
International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 3-5
March 2014, doi: 10.1109/ISQED.2014.6783305.

X. T. Ngo, J. L. Danger, S. Guilley, Z. Najm, and O. Emery, “Hardware property
checker for run-time Hardware Trojan detection”, In Proceedings of the 2015
European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway,
24-26 August 2015, doi: 10.1109/ECCTD.2015.7300085.

K. G. Liakos, G. K. Georgakilas, F. C. Plessas, and P. Kitsos, “GAINESIS:

101

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Generative Artificial Intelligence NEtlists SynthesIS”, Electronics, 2022, vol. 11, pp.
245, doi: 10.3390/electronics11020245.

J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detecting trojans through
leakage current analysis using multiple supply pad IDDQs”, IEEE Transactions on.
Information Forensics Security, 2010, vol. 5, pp. 893-904, doi:
10.1109/TIFS.2010.2061228.

R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of power signal
methods for detecting hardware trojans under real process and environmental
conditions”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2010, vol. 18, pp. 1735-1744, doi: 10.1109/TVLSI.2009.2029117.

F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal submodular
integrated circuits trojan detection”, [EEE Transactions on Information Forensics and

Security, 2011, vol. 6, pp. 162-174, doi: 10.1109/TIFS.2010.2096811.

S. Narasimhan et al., “Hardware trojan detection by multiple-parameter side-channel
analysis”, IEEE Transactions on Computers, 2013, vol. 62, pp. 2183-2195, doi:
10.1109/TC.2012.200.

C. Lamech, R. M. Rad, M. Tehranipoor, and J. Plusquellic, “An experimental analysis
of power and delay signal-to-noise requirements for detecting trojans and methods for
achieving the required detection sensitivities”, /IEEE Transactions on Information
Forensics and Security, 2011, vol. 6, pp. 1170-1179, doi:
10.1109/TIFS.2011.2136339.

K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping technique for detecting
hardware trojans impacting circuits delay”, IEEE Design & Test, 2013, vol. 30, pp.
26-34, doi: 10.1109/MDAT.2013.2249555.

A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification of stealthy
malicious logic using boolean functional analysis”, In Proceedings of the 2013 ACM
SIGSAC Confernce on Computer & Communications Security, Berlin, Germany, 4

November 2013, pp. 697-708, doi: 10.1145/2508859.2516654.

J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification for hardware
trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2015, vol. 34, pp. 1148-1161, doi: 10.1109/TCAD.2015.2422836.

102

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

C.Bao, Y. Xie, Y. Liu, and A. Srivastava, “On Reverse Engineering-Based Hardware
Trojan Detection”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2016, vol. 35, pp. 49-57, doi: 10.1109/TCAD.2015.2488495.

D. Jap, W. He, and S. Bhasin, “Supervised and unsupervised machine learning for
side-channel based Trojan detection”, In Proceedings of the 27th International
Conference on Application-Specific Systems, Architectures and Processors (ASAP),
London, UK, 06-08 July 2016, doi: 10.1109/ASAP.2016.7760768.

M. Xue, J. Wang, and A. Hux, “An enhanced classification-based golden chips-free
hardware Trojan detection technique”, In Proceedings of the 2016 IEEE Asian
Hardware-Oriented Security and Trust (AsianHOST), Yilan, Taiwan, 19-20
December 2016, doi: 10.1109/AsianHOST.2016.7835553.

S. Wang, X. Dong, K. Sun, Q. Cui, D. Li, and C. He, “Hardware Trojan detection
based on ELM neural network™, In Proceedings of the First IEEE International

Conference on Computer Communication and the Internet (ICCCI), Wuhan, China,
13-15 October 2016, doi: 10.1109/CCIL.2016.7778952.

T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection technique for
hardware Trojans using machine learning in frequency domain”, In Proceedings of
the 4th IEEE Global Conference on Consumer Electronics (GCCE), Osaka, Japan,
27-30 October 2015, doi: 10.1109/GCCE.2015.7398569.

Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of Hardware
Trojan Design and Detection in Wireless Cryptographic ICs”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2017, vol. 25, pp. 1506-1519, doi:
10.1109/TVLSI.2016.2633348.

F. Khalid, S. R. Hasan, O. Hasan, and F. Awwad, “Runtime hardware Trojan monitors

through modeling burst mode communication using formal verification”, Integration,

2018, vol. 61, pp. 62-76, doi: 10.1016/j.v1s1.2017.11.003.

C. Bao, D. Forte, and A. Srivastava, “Temperature Tracking: Toward Robust Run-
Time Detection of Hardware Trojans”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2015, vol. 34, no. 10, pp. 15771585, doi:
10.1109/TCAD.2015.2424929.

H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-Lock: A novel

103

LUT-based logic obfuscation for FPGA-Bitstream and ASIC-hardware protection”,
In Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Hong Kong, China, 09 August 2018, doi: 10.1109/ISVLSI.2018.00080.

[131] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-Lock: Hard
distributions of SAT instances for obfuscating circuits using fully configurable logic
and routing blocks™, In Proceedings of the 56th ACM/IEEE Design Automation
Conference (DAC), Las Vegas, USA, 2-6 June 2019, doi: 10.1145/3316781.3317831.

[132] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “FPGA-based protection
scheme against hardware trojan horse insertion using dummy logic”, IEEE Embeded

Systems Letters, 2015, vol. 7, pp. 4650, doi: 10.1109/LES.2015.2406791.

[133] A. Nejat, S. M. H. Shekarian, and M. Saheb Zamani, “A study on the efficiency of
hardware Trojan detection based on path-delay fingerprinting”, Microprocessors and

Microsystems, 2014, vol. 38, pp. 246-252, doi: 10.1016/j.micpro.2014.01.003.

[134] S. M. H. Shekarian and M. Saheb Zamani, “Improving hardware Trojan detection by
retiming”, Microprocessors and Microsystems, 2015, vol. 39, pp. 145-156, doi:
10.1016/j.micpro.2015.02.002.

[135] M. Pilgrim, S. Willison, “Dive Into Python”, Springer, 2009, vol. 2.

[136] M. Abadi et al., “TensorFlow: A system for large-scale machine learning”,
Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation, Savannah, USA, 2-4 November 2016, doi:
10.5555/3026877.3026899.

[137] F. Chollet, “Keras”, Journal of Chemical Information and Modeling, 2015.

[138] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” The Journal of
Machine Learning Research, 2011, vol. 12, pp. 2825-2830.

[139] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco California, USA, 13-17 August 2016, doi:
10.1145/2939672.2939785.

[140] T. Kluyver et al., “Jupyter Notebooks—a publishing format for reproducible
computational workflows”, In 20th International Conference on Electronic

Publishing (ELPUB), Gottingen, Germany, 7-9 June 2016, pp. 87-90, doi:

104

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

10.3233/978-1-61499-649-1-87.

C. H. M. Oliveira, M. T. Moreira, R. A. Guazzelli, and N. L. V. Calazans, “ASCEnD-
FreePDK45: An open source standard cell library for asynchronous design”, In
Proceedings of the 2016 IEEE/International Conference on Electronics, Circuits and
Systems (ICECS), Monte Carlo, Monaco, 06 February 2016, doi:
10.1109/ICECS.2016.7841286.

C. W. Royer, M. O’Neill, and S. J. Wright, “A Newton-CG algorithm with complexity
guarantees for smooth unconstrained optimization”, Mathematical Programming,

2020, vol. 180, pp. 451-488, doi: 10.1007/s10107-019-01362-7.

D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale
optimization”, Mathematical Programming, 1989, vol.45, pp. 503-528, doi:
10.1007/BF01589116.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, “LIBLINEAR: A
library for large linear classification”, The Journal of Machine Learning Research,

2008, vol. 9, pp. 1871-1874, doi: 10.5555/1390681.1442794.

M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic
average gradient”, arxiv, 2017, pp. 1-52, arxiv:1309.2388.

A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”, arxiv, 2014, pp.

1-15, arxiv:1407.0202.

J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector Machine
Classifiers”, Neural Processing Letters, 1999, vol. 9, pp. 293-300, doi:
10.1023/A:1018628609742.

C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector machines”, ACM
Transactions on Intelligent Systems and Technology, 2011, vol. 2, pp.1-27, doi:
10.1145/1961189.1961199.

A. J. Smola and B. Scholkopf, “A tutorial on support vector regression”, Statistics
and Computing, 2004, vol. 14, pp- 199-222, doi:
10.1023/B:STCO.0000035301.49549.88.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle,
“Basic Methods of Least Squares Support Vector Machines,” Least Squares Support

105

Vector Machines, 2002, pp. 71116, doi.org/10.1142/9789812776655 0003.

[151] R. Galvao, M. Aratijo, W. Fragoso, E. Silva, G. Jos¢, S. Soares, H. Paiva, “A variable
elimination method to improve the parsimony of MLR models using the successive

projections algorithm”, Chemometrics and Intelligent Laboratory Systems, 2008, vol.

92, pp. 83-91, doi: 10.1016/j.chemolab.2007.12.004.

[152] S. Ruder, “An overview of gradient descent optimization algorithms”, arxiv, 2017,

pp. 1-14 , arxiv: 1609.04747.

[153] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization”, arxiv,
2015, pp. 1-15, arxiv:1412.6980.

[154] T. Kurbiel and S. Khaleghian, “Training of Deep Neural Networks based on Distance
Measures using RMSProp”, arxiv, 2017, pp. 1-6, arxiv:1708.01911.

[155] A.F. Agarap, “Deep Learning using Rectified Linear Units (ReLU)”, arxiv, 2018, pp.
2-8, arxiv:1803.08375.

[156] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed
of backpropagation learning”, In From Natural to Artificial Neural Computation;

Springer, Berlin-Heidelberg, Germany, 1995, doi:10.1007/3-540-59497-3 175.

[157] C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning”, arxiv, 2018, pp.

1-20, arxiv:1811.03378.

[158] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, “Exciting FPGA
cryptographic Trojans using combinatorial testing”, In Proceedings of the 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE),
Gaithersbury, MD, USA, 2—5 November 2015; doi:10.1109/ISSRE.2015.7381800.

[159] L. Pyrgas and P. Kitsos, “A hybrid FPGA trojan detection technique based-on
combinatorial testing and on-chip sensing”, In Proceedings of the 2018 Springer 14th
International Symposium on Applied Reconfigurable Computing (ARC), Santorini,
Greece, 2-4 May 2018, doi: 10.1007/978-3-319-78890-6_24.

[160] A.P. Fournaris, L. Pyrgas, and P. Kitsos, “An efficient multi-parameter approach for
FPGA hardware Trojan detection”, Microprocess and Microsystems, 2019, vol 71,
doi: 10.1016/j.micpro.2019.102863.

106

	Περίληψη
	Abstract
	Πίνακας περιεχομένων
	Κατάλογος εικόνων
	Κατάλογος πινάκων
	Συντομογραφίες
	Chapter 1 Introduction
	1.1 Motivation and Structure of the Dissertation

	Chapter 2 Background
	2.1 Integrated Circuits Supply Chain
	2.2 Hardware Trojan Structure
	2.3 Hardware Trojan Models
	2.4 Hardware Trojan Attacks
	2.5 Hardware Trojan Taxonomy
	2.6 Challenges Against Hardware Trojan

	Chapter 3 An Overview on Artificial Intelligence
	3.1 Introduction
	3.2 Artificial Intelligence Term
	3.3 Machine Learning Term
	3.4 Deep Learning Term
	3.5 Tasks of Learning
	3.5.1 Supervised Learning
	3.5.2 Unsupervised Learning
	3.5.3 Semi-supervised Learning

	3.6 Types of Learning Models
	3.6.1 Artificial Neural Networks Models
	3.6.2 Bayesian Models
	3.6.3 Clustering Models
	3.6.4 Computer Vision Models
	3.6.5 Decision Trees Models
	3.6.6 Deep Neural Networks Models
	3.6.7 Dimensionality Reduction Models
	3.6.8 Ensemble Learning Models
	3.6.9 Generative Learning Models
	3.6.10 Instance Based Models
	3.6.11 Natural Language Processing Models
	3.6.12 Regression Models
	3.6.13 Regularization Models
	3.6.14 Speech Recognition Models

	3.7 AI History Timeline

	Chapter 4 Countermeasures Against Hardware Trojans
	4.1 Introduction
	4.2 Historical Throwback
	4.3 Categorization of Studies
	4.4 Distribution of the most Contributing Journal Studies
	4.5 Studies Trend
	4.6 SCA-based Approaches
	4.6.1 SCA-based Power Analysis Approaches
	4.6.2 SCA-based Time Analysis Approaches
	4.6.3 SCA-based Approaches Conclusions

	4.7 ML and Simulation based Approaches
	4.7.1 Logic Testing Simulation Approaches
	4.7.2 ML-based Approaches
	4.7.3 ML and Simulation based Approaches Conclusions

	4.8 Auxiliary Approaches
	4.8.1 Runtime Monitoring Approaches
	4.8.2 Prevention & Facilitation Approaches
	4.8.3 Auxiliary Approaches Conclusions

	4.9 Countermeasures Against Hardware Trojans Conclusions

	Chapter 5 GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS
	5.1 Introduction
	5.2 Scheme of GAINESIS Methodology
	5.3 Data set
	5.3.1 Initial Data Set Development

	5.4 Machine Learning Classifiers Development
	5.4.1 GB-based Classifier
	5.4.2 KNN-based Classifier
	5.4.3 LR-based Classifier
	5.4.4 MLP-based Classifier
	5.4.5 RF-based Classifier
	5.4.6 SVM-based Classifier
	5.4.7 XGB-based Classifier

	5.5 Machine Learning Classifiers Evaluation
	5.6 GAINESIS Development
	5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms

	5.7 GAINESIS Evaluation
	5.8 Synthesis of New Generated Data Sets
	5.9 New Generated GB-based Classifiers Development
	5.10 Mixed GB-based Classifiers Development

	Chapter 6 Results
	6.1 New Generated Data Sets Results
	6.2 Mixed Data Sets Results
	6.3 All Data Sets Results
	6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-880 Classifier
	6.5 Comparison to Existing Methods

	Chapter 7 Conclusions and Future Work
	References

