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Ph.D. Dissertation 

 

Intelligent Computational System for Defects and Anomalies 

Detection in Electrical Engineering  
Konstantinos Liakos 

 

Abstract 

In our days there is a need for even more and more sophisticated circuits. The design 

companies to reduce the operating costs and facilitate mass production of integrated circuits, 

outsource their fabrication to third-party foundries. This process increases the risk of 

intrusion attacks in the form of hardware viruses, also known as hardware trojans (HTs) 

viruses. HTs viruses are a critical problem that has the potential to become an outbreak in 

the coming years, presenting a significant threat both technologically and socially.  

The majority of the studies are concerned with the development of countermeasures against 

HTs for Field-Programmable Gate Array (FPGA) circuits at the post-silicon stage. Also, 

there is limited information and published studies for the Application-Specific Integrated 

Circuits (ASICs) and specifically for the pre-silicon stage. ASICs are challenging due to the 

variety of design phases especially on the pre-silicon stage and for the need for professional 

tools for the design of each phase.  

In this thesis, we studied several phases for the design process on ASICs and we found that 

there is a general lack of free benchmark circuits and also there is a high imbalance problem 

between uninfected and infected benchmark circuits. We used and designed all the limited 

benchmark circuits for the Gate-Level Netlist (GLN) phase of ASICs with a professional 

tool and extracted area, power and time analysis features. We developed our Machine 

Learning (ML) classification models based on this limited data and we observed that the lack 

of samples leads to the development of imbalanced and no robust ML-based classification 

approaches against HTs viruses. We solved the problem of the limited data with the 

development of our Deep Learning (DL) - Generative Adversarial Networks (GANs) models 

which were able to synthesize new generated data based on our real limited data. GANs are 

novel DL algorithms that are used in the computer vision field for generating artificial 

images and it was the first time that GANs were used in this research field. Based on our 
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new generated data we developed a robust ML-based classifier as a countermeasure against 

HTs at the GLN phase and compared it with existing methods. Finally, we turned our 

generative model into a free tool to be used as a solution for dealing with the limited number 

of data. 
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Chapter 1 Introduction 

Every year, more and more innovative applications based on technology are developed and 

implemented in every aspect of our lives. The majority of these applications are based on 

Internet of Things (IoT) devices and Artificial Intelligence (AI), aiming to provide us with 

the ability to remotely access information and data from any device and automate tasks. 

However, all these technological breakthroughs do not come without disadvantages. 

IoT devices consist mainly of sophisticated Application-Specific Integrated Circuit 

(ASIC)—Integrated Circuits (ICs). To reduce operating costs and facilitate mass production, 

design companies frequently outsource IC fabrication to third-party foundries. This process 

increases the risk of intrusion attacks in the form of hardware viruses, also known as 

Hardware Trojans (HTs). In the field of electronics, HT viruses are a critical problem that 

has the potential to become an outbreak in the coming years, presenting a significant threat 

both technologically and socially. The majority of the studies are concerned for the 

development of countermeasures against HTs for Field-Programmable Gate Array (FPGA) 

circuits at post-silicon stage. There is a limited information and published studies for the 

ASICs and specifically for the pre-silicon stage [1–25]. ASICs are challenging due to the 

variety of design phases especially on the pre-silicon stage and for the need of professional 

tools for the design of each phase. 

HTs are related to unwanted modifications to circuits that occur during the pre-silicon and 

post-silicon stages. Because of the complexity of modern circuits, HTs can be inserted at 

any phase of IC development and remain inactive until activated by a variety of activation 

mechanisms. HTs are related to total circuit collapse, unexpected IC failures and the leakage 

of sensitive information [16]. Therefore, developing well-designed and efficient HT 

countermeasures is crucial. The HT structure consists of an activation mechanism (trigger) 

and an effect (payload). HTs remain totally silent and via rare events or signals their triggers 

are activated [16], based on two logics, sequential or combinational. Sequential HTs need a 

sequence of rare signals for their activation, while the activation of combinational HTs is 

based on the simultaneous presence of a combination of rare signals. Furthermore, HT 

attacks are grouped into two categories of attacks, cryptographic engine and processor 

attacks. Cryptographic engine attacks try to leak encrypted information through various 
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attack mechanisms, while the general-purpose processors aim to degrade or even to totally 

destroy the system via the memory, at lower levels of the processor and kernel. 

The question that quickly comes to mind is, who gains from the insertion of HTs into ICs? 

A competitor, for example, might put an infected circuit into another company's IC to 

discredit it, diminish its market share, consumer confidence, and earnings. Another HT use 

case involves the sabotage of military equipment and infrastructure between countries 

through HT cyber warfare [17].  

Ideally, any unwanted alteration applied to an IC should be detected at any phase of the pre-

silicon (e.g., Design Rule Checking–DRC, and Layout vs. Schematic–LVS checking) and 

post-silicon verification stages. However, the pre-or post-silicon stage of an IC requires the 

IC golden model. This information is not always available, particularly for designs that are 

based on IPs that originate from mediator manufacturers. HT attacks can be divided 

according to the number of phases for each stage in the circuit’s production chain at the 

Register Transfer Level (RTL), Gate Level Netlist (GLN), Placement & Routing (P&R) and 

Graphic Database System II (GDSII) for the pre-silicon stage, as well as fabrication and 

testing–assembly for the post-silicon stage. Depending on the targeted phase, the attacker 

might obtain full access to design files and source code, or compromise computer-aided 

design tools and scripts to output a modified IC representation without altering the source 

code. Fabrication attacks, on the other hand, take place after tape-out and can remove or add 

components via layout geometry modification, reverse engineering or IC metering. 

Machine Learning (ML) [18] and Deep Learning (DL) [19] in particular represent a 

collection of algorithms for modeling patterns embedded in data. DL has become very 

popular, especially in the last decade, for the development of solutions in multiple scientific 

fields, the industry, bioinformatics, agriculture, etc. [20][21]. In the hardware security field, 

a plethora of ML-based approaches for HT detection has been introduced in the last six years 

[22][23]. For the pre-silicon stage, these studies aim for the classification of normal and HT-

infected circuits at the GLN phase, using area and power analysis GLN features such as 

number of gates, number of nets, number of multiplexers, number of flip-flops, number of 

cells and number of ports, as well as total, switching and combinational power. The most 

frequently used ML algorithms are Support Vector Machine (SVM) and Random Forest 

(RF), with SVM typically ranking as the best-performing model [24][25][26][12]. 

Most ML-based studies in the field of HTs utilize the public Trust-HUB [28][29] library of 

circuit designs for extracting features related to both HT-free and HT-infected ICs. Utilizing 
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the Trust-HUB repository has three major disadvantages: since the majority of circuits are 

designed for FPGA, there is an imbalance between HT-free (N = 18) and HT-infected (N = 

880) circuits, the circuits do not have diversity, and they are large in size, which means that 

they are easier to detect. The lack of HT-free and diversity designs leads to the creation of 

imbalanced data sets and subsequently to highly unreliable models with low generalization 

capacity which are incapable of detecting small-in-size HTs. It is becoming evident that the 

HT detection field requires a much higher number of circuit and diversity designs than what 

is already available in Trust-Hub, for developing robust ML models. This is not an easy task, 

since the majority of IC designs are protected by Intellectual Property (IP) rights and will 

hardly ever be deposited in public repositories such as Trust-HUB. Thus, the community 

will have to become creative and make the most out of the available circuit designs from 

public resources. 

1.1 Motivation and Structure of the Dissertation 

The main topic of this research is to provide a solution to the Trust-HUB HT-free (TF) and 

HT-infected (TI) circuits imbalance problem, for the first time, by developing a feature 

generative approach based on Generative Adversarial Networks (GANs), named 

GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS. GAINESIS utilizes a 

Wasserstein Conditional Generative Adversarial Network (WCGAN) model for the 

synthesis of new HT-free and HT-infected circuit features from the GLN phase. GANs are 

mostly used in the computer vision field for generating artificial images on various domains, 

such as realistic photographs of human faces [30], textual descriptions of birds and flowers 

[31], reconstructing damaged photographs of human faces [32], removing rain and snow 

from photographs [33] and many other functions. For the development of GAINESIS, the 

Design Compiler NXT tool was utilized to synthesize 880 circuits (18 TF and 862 TI) at the 

GLN phase based on designs deposited in Trust-HUB. In-house-developed scripts were used 

to extract power and time features and to create the original data set. Also, multiple ML 

algorithms were tested on the original data set and the best-performing one (Gradient 

Boosting—GB) was used to further benchmark multiple GAN flavors and select the one that 

was better suited to the HT detection field (WCGAN). Based on the final GAINESIS model, 

new synthetic data sets of different sizes were generated and used to train distinct GB models 

to assess the applicability of GANs in the HT detection field. The best performed GB-

classifier was picked as our main classifier with the name ATLAS: hArdware Trojan 

Learning AnalysiS and compared to existing methods at the same unknown benchmark. 
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The remaining part of this dissertation is organized as follows: a detailed description of the 

HTs is given in Chapter 2. Specifically, are mentioned in detail HTs structure, models, 

attacks and taxonomy.  

An overview of AI is presented in Chapter 3. First, we present the terms about AI, ML and 

DL. Next, we present the tasks of learning and the differences and then we present the most 

significant types of learning models. 

Countermeasures against HTs are presented in Chapter 4. Specifically, we present a 

historical throwback of countermeasures. Then we present the categorization of the studies 

to journal and conference approaches. Also, we present the distribution of the most 

contributing journal and conference studies and we show the studies trend through the years. 

Lastly, we present in detail the categorization of countermeasures approaches against HTs 

through three main categories and six sub-categories. Specifically, we mention the function 

of each represented sub-category and category with tables and figures and we present in 

aggregate the function, benchmark and features for the approaches for each category. 

Chapter 5 presents the methodology of our GAINESIS approach. First, we present our 

scheme of GAINESIS methodology. Next, we mention our data set and features 

development. Then, we present our ML-based classifiers development for the classification 

of HT-free and HT-infected circuits and their evaluation. Specifically, seven different ML 

algorithms were used and compared for the development of our main classifier. Next, we 

present the development and evaluation of our GAINESIS approach. Lastly, we present our 

new generated and mixed data sets, as well as the development of our new generated and 

mixed based classifiers. 

Chapter 6 presents the results of our classifiers for new generated and mixed classifiers 

compared with our initial classifier. Finally, we present the comparison of our ATLAS 

classifier with existing state-of-the-arts methods.  

Conclusions and future work are presented in Chapter 7. 
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 Background 

2.1 Integrated Circuits Supply Chain 

To have a thorough grasp of the topic of HTs, the difficulty of preventing their contagious 

nature, and the challenges of identifying them while ensuring the smooth operation of ICs, 

we must first have a strong understanding of the modern circuit production chain and 

especially the production chain of the ASICs. ASICs production chain consists of two stages, 

pre- and post-silicon stages. The pre-silicon stage is the circuit design period and consists of 

steps: RTL, GLN and P&R. And the post-silicon stage is the fabrication period of the circuit 

and consists of the Side Channel Analysis (SCA) phase.  

Specifically, at RTL phase describes the specifications that the circuit will have through the 

usage of a Hardware Design Language (HDL) like Verilog or VHDL. When IC design and 

integration are completed at RTL, the design must be synthesized to a GLN. GLN is 

characterized as the logic synthesis phase and RTL is translated to GLN. The logic synthesis 

phase is done via professional Electronic Design Automation (EDA) tools like Cadence 

Genus Synthesis Solution, Synopses Design Compiler NXT etc.). These tools provide area, 

power and timing analysis of the circuit. The last phase is the P&R and is known as the 

physical design phase where the layout level is created via the GLN and is produced the final 

GDSII of the circuit. 

So, HT attacks are divided into four general groups for the pre-silicon stage (Figure 2.1), 

i.e., RTL, GLN, P&R and GDSII as well as Fabrication and Testing/Assembly for the post-

silicon stage. Depending on the targeted phase, the attacker might obtain full access to source 

code and design files, or compromise computer aided design tools and scripts to output a 

modified IC representation without altering the source code. On the other hand, fabrication 

attacks take place after tape-out and can add or remove components via reverse engineering, 

layout geometry modification or IC metering (Figure 2.1). 
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Figure 2.1 IC supply chain and HTs insertion in pre- and post-silicon stages 

2.2 Hardware Trojan Structure 

The typical structure of an HT consists of two mechanisms, triggers and payloads (Figure 2. 

2). Triggers are related to rare signals or events [34] and payloads with the activation of 

malicious functions. An HT aims to remain stealthy - to be undetectable during design 

simulation or testing and to be activated under rear conditions. So, an HT “wakes up” when 

the rare signal or event appears and via the payload mechanism attacks the IC. 

 

 
Figure 2.2 Hardware Trojan structure 

2.3 Hardware Trojan Models 

As mentioned HTs are designed to be undetectable, their structure is consisted of a trigger 

and a payload mechanism and can be implemented in all pre- and post-silicon phases of the 
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ICs production chain. Another characteristic of HTs is their logic models. Logic models are 

associated with the trigger mechanism and especially how the rare signal or event will 

activate the trigger mechanism. HTs are designed to have two logic models, a combinational 

or a sequential [34]. In combinational logic models the trigger mechanism is activated from 

a set of simultaneous rare signals or events (Figure 2.3A) and in sequential logic models 

from a series of rare events or signals (Figure 2.3B). 

 

 
Figure 2.3 Concept graph presenting (A) combinational and (B) sequential model logics 

2.4 Hardware Trojan Attacks 

The aim of HTs is to affect the normal functioning of the infected circuit. Thus, the HTs 

attacks can be divided into two types of attacks: those aimed at destroying the device known 

as general purpose processors attacks and those aimed at leaking sensitive information, 

known as cryptographic engine attacks. Cryptographic engine attacks aim at the crypto 

engine of the infected circuit through various attack mechanisms and leak encrypted 

information. General purpose processors attacks aim at the lower levels of the processor, 

kernel, memory and secret keys and degrade the system, even down to its total destruction. 

For example, these types of HTs can be activated under rare signals or events and disable 

the secure boot mechanism of the infected circuit [35][36]. 

2.5 Hardware Trojan Taxonomy 

There is no formal taxonomy for HTs. Εach study has its taxonomy structure. Tehranipoor 

et al. [37] presented a taxonomy of HTs based on three main characteristics of HTs, physical, 

activation and action. As physical characteristics are considered the type, size or structure of 

an HT. Activation characteristics are divided into external and internal activation 

mechanisms of an HT and action characteristics are considered the types of HT attacks to 

the infected circuit. Karri et al. [38] proposed a taxonomy model for HTs, based on five 
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characteristics: insertion phase, abstraction level, activation mechanism, effect and 

localization. While Bhunia et al. [34], proposed a taxonomy model based on trigger and 

payload mechanisms. 

2.6 Challenges Against Hardware Trojan 

Dealing with HTs has become one of the most important problems in the science of hardware 

security. Every year new studies are developed to address them. The main reason for the 

difficulty in dealing with HTs is main a large number of different cases of HT infections. 

HTs can be inserted at any stage and phase of ICs development, can attack at any unit of the 

ICs, processors, memory units, etc., Also, HTs can affect the ICs via a variety of attacks and 

can have different physical layouts. In addition, the stealthy nature of HTs and their ability 

to activate under rare conditions combined with the fact that the more complex a circuit is, 

the more difficult it is to deal with. 
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 An Overview on Artificial Intelligence 

3.1 Introduction 

Every year more and more people refer to terms like AI, ML and DL. This happens because 

a technology trend is the development and use of ΑΙ-based technologies on a professional or 

personal level. As a result, the meaning of these terms has been lost. So, it is important to 

understand that all these terms are part of the AI scientific field.  

In this chapter a detailed reference is made to the science of AI. Specifically, this chapter of 

the thesis is has presented differences between the AI, ML and DL terms. Also, are presented 

with details the learning tasks of AI like, supervised and unsupervised learning. Furthermore, 

a plethora of learning models and algorithms are discussed exhaustively. The aim of this 

chapter is for the readers to be able to distinguish the differences between the AI, ML and 

DL, as well as to comprehend how each learning model works and when their algorithms 

are applied. 

3.2 Artificial Intelligence Term 

The term the modern AI first was introduced in 1956 by John McCarthy through an academic 

conference. McCarthy defined AI as the science of making intelligent machines. So, AI can 

be defined as the scientific field that aims to teach machines to think without the need for 

human intervention. AI consists of a broad area of computer science and can be categorized 

into three main categories, AI-narrow, AI-general and AI-super. AI-narrow is goal-oriented 

and has been programmed to complete a single task. AI-general allows machines to learn 

and apply their intelligence to solve any problem by mimicking human intellect and/or 

behaviors and in AI-super machines are capable of outperforming even the best humans in 

terms of intelligence. 

3.3 Machine Learning Term 

ML term was introduced in 1959 by Samuel et al. [18] and it was defined as the scientific 

field that allows machines to learn without being strictly programmed. Specifically, ML 

consists of a subset of AI that uses statistical learning algorithms for the development of 

smart systems. Without being explicitly programmed, ML-based systems can learn and 
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improve on their own. The ML algorithms can be categorized into three main categories, 

supervised, unsupervised and semi-supervised learning. 

3.4 Deep Learning Term 

DL is a subset of ML techniques utilizing multiple layers of training with more reliable 

performance and fastest speed. The DL technique was inspired by the way a human brain 

analyzes information. DL-based systems consist of interrelated layers for the classification 

or prediction of information. In Figure 3.1 is presented in brief the differences between AI, 

ML and DL. 

 

 
Figure 3.1 Artificial intelligence vs machine learning vs deep learning 

3.5 Tasks of Learning 

AI, ML or DL algorithms can be categorized into three categories of learning tasks, 

supervised, unsupervised and semi-supervised learning. The main difference is that 

supervised learning uses labeled data to help in prediction, while unsupervised does not. 

Semi-supervised learning uses data mixed with labeled and unlabeled examples. However, 

there are some distinctions between the three techniques, as well as key areas where one 

surpasses the others. In this section are presented the differences between the three learning 

tasks. 

3.5.1 Supervised Learning 
Supervised learning uses data sets with labeled samples as inputs and outputs for the 

development of an ML or DL-based model. Supervised learning can be used as a solution 
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for two categories of problems, classification or regression. In the classification problems a 

labeled data set is split into sets, the training and test set for the development of a model. 

The aim is the model to be able to classify with high performance the samples of the test set. 

For example, a classic supervised classification learning problem is the classification of 

original from spam emails. Furthermore, in the regression problems aim of the model is 

through a labeled data set to understand the relationship between dependent and independent 

variables of the data set. Regression models are useful for predicting numerical values based 

on various data samples, such as sales revenue estimates for a certain business. In Figure 3.2 

is presented a typical figure of supervised learning. 

 

 
Figure 3.2 Supervised learning 

3.5.2 Unsupervised Learning 
Unsupervised learning uses data sets with unlabeled samples as inputs and outputs for the 

development of an ML or DL-based model. In unsupervised learning-based models from the 

data set it derives patterns between the features and when the model analyzes new data, it 

can classify the new samples into a class, based on the already learned feature patterns. 

Unsupervised learning can be used as a solution for clustering or dimensionality reduction 

problems. In the clustering problems aim of the model is via an unlabeled data set to group 

the data set. In dimensionality reduction problems aim of the model is to convert the higher 

dimensions data set into lesser dimensions without losing information, to reduce the poor 

performance which is produced from the data sets with a large number of features. In Figure 

3.3 is presented a typical figure of unsupervised learning. 
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Figure 3.3 Unsupervised learning 

3.5.3 Semi-supervised Learning 
Semi-supervised learning uses data sets with mixed samples like, labeled and unlabeled 

samples as inputs and outputs for the development of an ML or DL-based model. There is a 

desirable prediction problem, but the model must learn the structures to arrange the data and 

produce predictions. Classification and regression are two common semi-supervised 

problems. Unsupervised and semi-supervised learning may be more tempting options 

because relying on domain expertise to label data accurately for supervised learning can be 

time-consuming and costly. In Figure 3.4 is presented a typical figure of semi-unsupervised 

learning. 

 

 
Figure 3.4 Semi-supervised learning 

3.6 Types of Learning Models 

3.6.1 Artificial Neural Networks Models 
Artificial neural networks (ANNs) are inspired by the functionality of the human brain. 

ANNs emulate complicated tasks like cognition, learning, decision making and pattern 

generation [39]. The human brain is made up of billions of neurons that communicate with 

one another and process any information that is sent to them. Based on the same philosophy, 

an ANN is a simplified model of the structure of a biological neural network, which is made 

up of interconnected processing units that are organized in a specific topology. Specifically, 

ANNs consist of three categories of layers, input, hidden and output layers. Input layers fed 

the data set into the system. Hidden layers produce the learning of the model and the 
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decision/prediction is given from the output layer. ANNs are supervised models that are 

commonly used to solve regression and classification problems. The most common ANNs-

based algorithms are perceptron [40], multi-layer perceptron [41], back-propagation [42], 

resilient back-propagation [43] and counter propagation algorithms [44]. Also, other 

common ANNs algorithms are radial basis function networks [45], Kohonen networks [46], 

Hopfield networks [47], generalized regression networks [48], autoencoder [49], adaptive-

neuro fuzzy inference systems [50], extreme learning machines [51] and self-adaptive 

evolutionary extreme learning machines [52]. In Figure 3.5 is presented a typical structure 

of an ANN model. 

 

 
Figure 3.5 Artificial neural networks model 

3.6.2 Bayesian Models 
Bayesian models (BM) are a type of probabilistic graphical model in which the analysis is 

carried out using Bayesian inference. This model belongs to the domain of supervised 

learning and can be used to solve classification or regression problems. Some of the most 

common BM-based algorithms are Bayesian network [53], bayesian belief network [54], 

naive Bayes [55], multinomial naive Bayes [56] and Gaussian naive Bayes [57]. In Figure 

3.6 is presented a typical figure of a Bayesian model. 

 

 
Figure 3.6 Bayesian model 
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3.6.3 Clustering Models 
As mentioned, clustering-based models [58] are typical applications of unsupervised 

learning models. These types of models are used to find natural groupings of data, known as 

clusters. Common clustering algorithms are the k-means [59], hierarchical clustering [60] 

and the expectation maximisation algorithm [61]. In Figure 3.7 is presented a typical 

structure of a cluster-based model. 

 

 
Figure 3.7 Clustering model 

3.6.4 Computer Vision Models 
Computer vision (CV) models aim to understand information from digital images or videos. 

CV-based models are concerned with the automatic extraction, analysis and understanding 

of useful information from a single image or a sequence of images. It involves the 

development of a theoretical and algorithmic basis to achieve automatic visual 

understanding. Some of the most common algorithms are, HRNet-OCR [62], 

FixEfficientNet [63] and EfficientDet [64]. In Figure 3.8 is presented a typical structure of 

a CV model. 

 

 
Figure 3.8 Computer vision model 

3.6.5 Decision Trees Models 
Decision trees (DT) consist of classification or regression models based on a tree-like 

architecture [65]. In DT-based models, the data set is progressively grouped into smaller 

homogeneous subsets known as sub-populations, while an associated tree graph is produced 
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simultaneously. Each internal node of the tree structure reflects a separate pairwise 

comparison on a given feature, and each branch indicates the outcome of this comparison. 

Following the path from the root to the leaf, leaf nodes represent the final prediction or 

decision of the process. Common DT-based algorithms are classification and regression trees 

[66], chi-square automatic interaction detector [67], and the iterative dichotomiser [68]. In 

Figure 3.9 is presented a typical structure of a DT model. 

 

 
Figure 3.9 Decision trees model 

3.6.6 Deep Neural Networks Models 
Deep neural networks (DNNs) [69] consist of a modern version of ANNs. DL-based models 

consist of the new era of AI while more and more models are developed based on them. As 

the ANNs, the DL-based models consist of three categories of layers, input, multiple hidden 

and output layers. The significant difference between ANNs is the usage of multiple 

processing layers which can learn complex data representations via multiple levels of 

abstraction. Furthermore, one more advantage of DL-based models is that the feature 

extraction can be performed by the model itself. These models can be used for supervised, 

unsupervised and semi-supervised learnings. The most common DL-based algorithms are 

convolutional neural networks [70], deep Boltzmann machines [71], deep belief networks 

[72], autoencoders [73], recurrent neural networks [74] and long short-term memory 

networks [75]. In Figure 3.10 is presented a typical structure of a DNN model. 

 

 
Figure 3.10 Deep neural networks model 
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3.6.7 Dimensionality Reduction Models 
Dimensionality reduction (DR) based models aim of the models is to convert the original 

higher dimensional data set into lower dimensional representation to preserve as much 

information from the original data as feasible and to reduce the poor performance which is 

produced from the data sets with a large number of features. DR-based models can be used 

for supervised and unsupervised learning types and usually are applied to solve regression 

problems. The most common DR-based algorithms are principal components [76], partial 

least squares [77] and linear discriminants [78]. In Figure 3.11 is presented a typical structure 

of a DR model. 

 

 
Figure 3.11 Dimensionality reduction model 

3.6.8 Ensemble Learning Models 
Ensemble learning (EL) models are designed to improve the prediction performance of a 

given statistical learning or model fitting technique by developing a linear combination of 

simpler base learners. So, each trained simpler base learner consists of a single hypothesis. 

EL-based models or multiple-classifier systems enable hybridization of hypotheses that were 

not produced by the same base learner, producing improved outcomes in the case of high 

variety among the single models. Typically, in EL-based models as the base learner is used 

the DT architecture. Common EL-based algorithms are AdaBoost [79], bootstrap 

aggregating [80], boosting technique [81], gradient boosting machines [82] and random 

forest [83]. In Figure 3.12 is presented a typical structure of an EL model. 
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Figure 3.12 Ensemble learning model 

3.6.9 Generative Learning Models 
Generative learning (GL) models aim to generate new synthetic samples. A typical GL 

model consists of two neural networks, the generative network and the discriminative 

network. The generative network learns how to produce new synthetic samples according to 

the initial data set and the discriminative network distinguishes the generated from the initial 

original samples. GL-based models mostly are used to generate new samples in art, video 

games and advertising. Common GL-based algorithms are GANs [84], conditional 

generative adversarial networks (CGAN) [85], Wasserstein generative adversarial network 

WGAN [86], WCGAN [87], StyleGAN [88] and CycleGAN [89]. In Figure 3.13 is presented 

a typical structure of a GL model. 

 

 
Figure 3.13 Generative learning model 

3.6.10 Instance Based Models 
Instance based (IB) models are memory-based models that learn from the comparison of 

new cases to instances in the training data set. These types of models construct hypotheses 

directly from the available data. Also, IB-based models generate regression or classification 

predictions only via specific instances while these models do not adhere to a set of 

abstractions. The main disadvantage of IB-based models is that their complexity increases 

with data. The most common IB-based algorithms are the k-nearest neighbor [90], vector 

quantization [91], locally weighted [92], support vector machines [93] and self – organizing 

map [94]. In Figure 3.14 is presented a typical structure of an IB model. 
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Figure 3.14 Instance based model 

3.6.11 Natural Language Processing Models 
Natural Language Processing (NLP) models are used to provide automatic summarization 

of the main points in a given text or document. NLP-based algorithms are also used to 

classify text according to predefined categories or classes and are used to organize 

information, and in email routing and spam filtering. The most common NLP-based 

algorithms are BERT [95] and XLNet [96]. In Figure 3.15 is presented a typical function of 

an NLP model. 

 

 

Figure 3.15 Natural language processing model 

3.6.12 Regression Models 
The goal of a regression learning model is to predict an output variable based on known 

input variables. The most common regression-based algorithms are linear regression [97], 

logistic regression [98], ordinary least squares regression [99], cubist [100] and locally 

estimated scatterplot smoothing [101]. In Figure 3.16 is presented a typical structure of a 

regression model. 
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Figure 3.16 Regression model 

3.6.13 Regularization Models 
Regularization models consist of an extension of regression models. The aim of 

regularization-based models is through a penalize technique to simplify complex models to 

simpler performance models. Common regularization algorithms are ridge regression [102], 

least absolute shrinkage and selection operator [103] and least-angle regression [104]. In 

Figure 3.17 is presented a typical structure of a regularization model. 

 

 
Figure 3.17 Regularization model 

 

3.6.14 Speech Recognition Models 
Speech recognition (SR) models or voice recognition models are used in speech recognition 

technology to convert voice to text. SR-based models work by breaking down the audio of 

a speech recording into individual sounds, analyzing each sound, using algorithms to find 

the most probable word fit in that language, and transcribing those sounds into text. Most 

common SR-based algorithms are ContextNet [105], LiGRU [106] and ResNet [107]. In 

Figure 3.18 is presented a typical function of an SR model. 
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Figure 3.18 Speech recognition model 

 

3.7 AI History Timeline 

As can be observed from the Figure 3.19, the first algorithms were created in 1950 with the 

aim of developing simple ΑΙ models to solve basic mathematical problems. Moreover, from 

1950-1970 an increase in the development of new algorithms can be observed. While from 

1980-2000 there is a sharp decline. The main reason was the need to solve increasingly 

complex mathematical problems, combined with the lack of computational resources. This 

led to a lack of interest in this field of research. While, it is observed that since 2014, the 

period in which computing resources have increased, more sophisticated algorithms are 

being developed to solve more complex problems, such as computer vision, natural language 

processing and speech recognition problems. 

Figure 3.19 ML & DL algorithms history timeline 
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 Countermeasures Against Hardware Trojans 

4.1 Introduction 

As mentioned, HTs can be inserted at any stage and phase of ICs development, can attack at 

any unit of the ICs, can affect the ICs via a variety of attacks and can have different physical 

layouts. For these reasons in this thesis, we categorized the countermeasures approaches 

against HTs in three major categories, SCA-based approaches, ML-based & simulation 

approaches and auxiliary approaches (Figure 4.1). SCA-based approaches are categorized 

into two subcategories power and time analysis approaches. ML-based and simulation 

analysis approaches are also categorized into two subcategories Logic Testing (LT) and ML-

based classification. And the auxiliary approaches are categorized in Runtime Monitoring 

(RM) and Prevention-Facilitation (PF) approaches. 

 

 

Figure 4.1 Categorization of countermeasures approaches against HTs 

4.2 Historical Throwback 

Historically, the first research attempt that mentioned and studied the existence of HTs in 

ICs was presented by Agrawal et al [108] in 2007. The authors have developed the first 

detection approach based on SCA-based power analysis. In 2009, Chakraborty et al [109] 

developed the first method for HT detection based on LT. In 2012, Salmani et [110] proposed 
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the first PF approach. In 2014 introduced by Bao et al [111] the first ML-based approach for 

the post-silicon stage. In 2015, Ngo et al [112] proposed an RM approach. Lastly, in 2016, 

the detection of HTs at GLN was proposed by Hasegawa et al [24], while in 2022 we 

proposed GAINESIS [113] the first GAN-based approach for the synthesis of new generated 

samples for GLN. In Figure 4.2 is presented a history timeline for countermeasures against 

HTs. 

 

 
Figure 4.2 History timeline for countermeasures against HTs 

4.3 Categorization of Studies 

We present twenty-nine approaches in total. Twelve are conference and sixteen are journal 

articles referring to a period between 2007 and 2019 (Figure 4.3). 

As mentioned, the category of SCA-based approaches consists of two subcategories SCA-

based power analysis and SCA-based time analysis. Specifically, SCA-based power analysis 

consists of five approaches, four journals and one conference. While SCA-based time 

analysis has only two journal approaches. Next, the category ML-based and Simulation 

consists of thirteen approaches. LT simulation subcategory consists of three in total 

approaches, two journals and one conference. ML-based subcategory consists of ten in total 

approaches two journals and eight conference studies. While the last category consists of 

two subcategories RM and PF. RM-based subcategory consists of two journals and one 
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conference study. While the PF subcategory consists of four journals and two conference 

methods. (Figure 4.4). 

 

 
Figure 4.3 Categorization of studies 

 

 
Figure 4.4 Categorization of studies per sub-categories 

4.4 Distribution of the most Contributing Journal Studies  

For these studies, it was noted that 50% were developed by academic institutions in the USA. 

Japan is in second place, with 13% of the total studies, which are based on ML at the GLN 

phase. China and Iran have 10% of the studies each. China is involved in the development 

of ML-based studies for the post-silicon stage of ICs. While Iran is dealing with the 
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development of studies for the PF subcategory. Furthermore, France, Austria, Malaysia and 

India have 3% each. (Figure 4.5). 

Our next step was to present the contribution of the most important journals according to the 

examined studies. In total twenty-two journals and conferences were used for the 

publishment of the examined studies. 64% of the studies were published at conferences and 

36% at journals. From the eight in total journals the most significant journals were the 

“Transactions on Information Forensics and Security”, “Transactions on Very Large-Scale 

Integration Systems” and “Transactions on Computers” with three published studies each. 

Then follows the “Microprocessors and Microsystems” journal with two published studies. 

Specifically, “Transactions on Information Forensics and Security” journal published studies 

that mainly focused on SCA-based power analysis approaches. While the “Microprocessors 

and Microsystems” journal published studies that focused exclusively on PF approaches 

(Figure 4.6). 

 

 

Figure 4.5 Geographical distribution of the contribution of each country to the research 

field focusing on countermeasures against HTs viruses. 
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Figure 4.6 Distribution of the international journals and conferences and concerning 

applications of studies per sub-categories. 

4.5 Studies Trend 

In Figure 4.7 we can observe the popularity of each sub category over the years. Specifically, 

from 2007 to 2013 most of the studies focused on the development of methods for the 

detection of HTs based on SCA power and time analysis. In 2012 the first auxiliary-based 

study appears. And the golden era of auxiliary based approaches was 2015 when the majority 

of these studies are developed. The first ML-based approach was introduced in 2014. But in 

2016 and 2017 there is a sharp increase in the development of such methods. As regards the 

LT simulation approaches the first study was presented in 2009 and other such approaches 

have been developed over time. 
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Figure 4.7 Countermeasures trend 

4.6 SCA-based Approaches 

SCA-based approaches aim to secure ICs for the SCA phase of the post-silicon stage of ICs. 

These approaches use techniques based on side-channel analysis features and detect changes 

of physical characteristics like power and time, caused by HTs. If the original SCA values 

of an IC differ, then the circuit is infected. That is caused because when an HTs is partially 

or fully activated the original infected circuit exhibit greater switching activity compared to 

the original normal circuit. 

4.6.1 SCA-based Power Analysis Approaches 
The first study which mentioned the existence of HTs was presented in 2007 by Agrawal et 

al. [108], and it was an SCA-based approach. Specifically, the authors developed a method 

for the detection of large or small in physical layout HTs based on SCA of transient current 

characteristics. In a study [114], the authors introduced a method for the detection of HTs 

based on SCA of static current characteristics. For multiple places across the 2-D surface of 

the chip, they took simultaneous measurements of static current features. The experimental 

results showed that this multiple measurement techniques in combination can effectively 

detect small HTs. Furthermore, authors in the study [115], proposed an SCA-based method 

via a power supply transient signals analysis. To evaluate local power supply transient signal 

measurements received from many individual power ports on the chip, a power supply 
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transient analysis technique was applied. The power supply transient signals for each power 

port were measured, and the power supply transient of each surrounding power port was 

compared. Following that, a signal calibration was used to reduce noise, and a scatter plot 

analysis was designed to detect an HT effectively. The final results showed that this 

technique was able to detect large physical layout HTs. In 2011 developed by Koushanfar et 

al. [116] a unified framework based on SCA leakage power. The authors also combined 

calibration and sensitivity analysis techniques for the detection of HTs. This approach was 

able to detect with low process overhead large in physical layout HTs. The last SCA-based 

on power features approach presented in this book is the study [117]. Specifically, the 

authors proposed a multiple-parameter SCA-based approach for the detection of HTs. They 

used and combined dynamic current and maximum frequency analysis features for HTs 

detection. The results showed that their approach was able to detect varying types and sizes 

of HTs. In Table 4.1 is presented a summary of SCA-based power analysis approaches. 

 

Table 4.1 Summary of approaches in SCA-based power analysis 

Authors 
Observed 
Features 

Feature 
Number Functionality Effectiveness Benchmark Type 

[108] Transient supply 
current (IDDT) 1 

Detection of HTs in ICs, based 
on side-channel information 
analysis via transient current 

Large and 
small HTs 

RSA 
Circuit Simulation 

[100] Quiescent supply 
current (IDDQ) 1 Detection of HTs based on the 

analysis of a chip’s IDDQS Small HTs N/A Experimental 

[101] Transient supply 
current (IDDT) 1 Detection of HTs via sensitivity 

analysis of power signal Large HTs 
ISCAS 85 
Benchmar
k Circuit: 

C499 

Simulation 

[102] 

Delay (T), 
Quiescent supply 
current (IDDQ), 
Transient supply 
current (IDDT) 

3 

Detection of HTs in ICs based 
on gate-level characterization 

and multi-parameter 
measurements 

Large HTs 

ISCAS 85 
Benchmar
k Circuits: 
C8, C499, 

C432, 
C1355, 
C3450 

Simulation 

[103] 

Transient supply 
current (IDDT), 

Maximum 
operating 

frequency (Fmax) 

2 
Detection of HTs, based on 

dynamic current and maximum 
operating frequency 

Varying types 
and sizes of 

HTs 

Xilinx 
FPGA: 

Virtex-II 
XC2V500 

Simulation/ 
Experimental 
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4.6.2 SCA-based Time Analysis Approaches 
In 2011 developed by Lamech et al [118] an SCA-based on time analysis features approach. 

Specifically, the authors combined SCA delay and power features for the detection of HTs. 

The experimental results showed that their method was able to detect large and small in size 

HTs. In 2013 Xiao et al. [119] developed an approach based on clock sweeping and SCA 

delay characteristics. They used a combination of path delay fault patterns with clock 

sweeping transition technique for the detection of HTs in a circuit. The results showed that 

their method could detect small in size HTs. In Table 4.2 is presented a summary of SCA-

based time analysis approaches. 

 

Table 4.2 Summary of approaches in SCA-based time analysis 

Authors 
Observed 
Features 

Feature 
Number 

Functionality Effectiveness Benchmark Type 

[103] 
Power, 

Delay (T) 
2 

Detection of HTs, 
based on the 

analysis of power 
and delay 

Large and small HTs 
Xilinx FPGA Circuit: 
Virtex XUP-V2Pro 

Experimental 

[119] 
Transition, 
Delay (T) 

2 

Detection of HTs 
based on clock 

sweeping and delay-
based detection 

Small HTs 
ISCAS 89: 

S38417 
Simulation/ 

Experimental 

4.6.3 SCA-based Approaches Conclusions 
Power analysis approaches constitute 71% of the total approaches in the SCA-based 

category. While the time analysis approaches 29% (Figure 4.8). As regards the benchmark, 

ISCAS 85 and custom circuits were the most used for power analysis approaches while 

ISCAS 89 and custom circuits for time analysis approaches (Figure 4.9). Finally, as far as 

features were concerned, the most used features for power analysis approaches were the 

quiescent and transient supply current and the delay for time analysis approaches (Figure 

4.10). 
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Figure 4.8 Number of studies in SCA-based approaches category 

 

 
Figure 4.9 Benchmark in SCA-based approaches category 
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Figure 4.10 Features types in SCA-based approaches category 

4.7 ML and Simulation based Approaches 

ML approaches aim to handle HTs based on classification. These types of approaches 

developed ML-based classifiers for the classification of HTs in different phases of ICs 

development. On the other simulation-based approaches like logic testing techniques aim to 

generate tests that activate HTs and propagate the HTs payload to primary outputs for 

comparison with the golden circuit. The challenge with these techniques is to generate 

efficient tests to activate HTs. In this section, are presented ML and simulation-based 

approaches as countermeasures against HTs. 

4.7.1 Logic Testing Simulation Approaches 
As mentioned, LT simulation approaches aim to generate effective tests in order to be able 

to activate and discover the stealthy nature of HTs. Due to the stealthy nature of HTs it is 

difficult to distinguished an infected circuit. Random generated tests are not efficient for this 

reason the LT-based simulation approaches aim to generate guided tests for the activation 

and detection of HTs. In 2009 Chakraborty et al. [109] proposed an approach based on LT 

simulation as a countermeasure against HTs. Specifically, they developed an LT approach 

named MERO. This approach generated test patterns based on multiple excitations of rare 

logic conditions at internal nodes. The simulation results showed that this approach was able 

to detect small in size HTs. In 2011 Waksman et al. [120] developed an LT-based framework 

named FANCI. They used Boolean functional analysis features to generate test patterns for 

HTs activation. The results showed that this approach was able to detect infected circuits 

with a low false positive rate. In the last study [121], the authors developed an LT-based 
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simulation technique named VeriTrust for the detection of HTs at the design phase based on 

HTs trigger inputs. VeriTrust technique consisted of a traced and a checker. The tracer parsed 

verification tests to identify trigger signals containing inactive entries while the checker 

examined these signals to determine which are associated with HTs. The results showed that 

this approach was able to detect different types and sizes of HTs. In Table 4.3 is presented a 

summary of LT simulation approaches. 

 

Table 4.3 Summary of LT simulation approaches. 

Authors 
Observed 
Features 

Feature 
Number Functionality Effectiveness Benchmark Type 

[109] Nodes 1 

Detection of HTs 
based on test pattern 

generation and 
multiple excitations of 
rare logic conditions at 

internal nodes 

Small HTs 

ISCAS 85: 
C2670, C3540, C5315, 

C6288, C7552 
 

ISCAS 89: 
S13207, S15850, S35932 

Simulation 

[120] Wires 1 
Detection of HTs 
based on Boolean 
functional analysis 

HTs and IPs ISCAS 89: 
S15850, S35932, S38417 Simulation 

[121] Netlists 1 

Identification of HTs 
at the design stage, 

based on the detection 
of trigger inputs 

Different 
types and 

sizes of HTs 

ISCAS 89: 
S15850, S35932, S38417, 

S38584 
 

Microcontrollers: 
MC8051, LEON3 

Simulation 

4.7.2 ML-based Approaches 
ML-based approaches aim to detect the existence of HTs in a circuit. In these approaches 

are developed models which can classify infected from normal circuits or to use as reverse 

engineering or side-channel analysis methods for the detection of HTs in a circuit. 

Specifically, for the pre-silicon stage proposed ML-based classifiers for the classification of 

infected and normal circuits at different pre-silicon phases. While ML-based methods that 

work as reverse engineering techniques and ML-based methods trained via side channel 

analysis features were developed for the detection of HTs at the post-silicon stage. 

For the pre-silicon phase in 2016, Hasewaga et al. [24] proposed an SVM-based model for 

the classification of infected from normal circuits. Specifically, the authors developed an 

SVM-based model for the classification of HTs at the GLN phase of the pre-silicon stage. 

For the training of the model was used a data set consisting of GLN-based features like nets 
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and gates of the circuits. The results showed that this approach was able to classify 

effectively the infected with HTs from normal nets. The same group [25] 2017 proposed 

another ML-based model. They developed an RF-based model which was trained via GLN-

based area features, like number of flip-flops and multiplexors before and after for each net. 

The results showed that the RF-based model was effective for the classification of the two 

classes. In 2018 Inoue et al. [26] proposed an SVM-based model in a combination with GLN-

based area features for the classification of HTs at the GLN phase of the pre-silicon stage of 

ICs development. The SVM-based model was trained via area features like the number of 

logic gates and flip-flops for each net of the infected and normal circuits. The final results 

proved the validity of the method. In the study [27], the authors developed six ML-based 

models for the classification of HTs at the GLN phase. Specifically, they developed and 

compared six ML-based models which were trained via a dataset consisting of GLN-based 

area, power, and time analysis features from infected and normal circuits. The features 

consisted of area features like the number of cells, nets, ports, and power features like the 

number of total switching and combinational power of each normal and infected circuits. 

The experimental results showed that their GB-based model was able to classify effectively 

the normal from HTs circuits. 

As mentioned, also ML-based approaches were developed for the detection of HTs at the 

post-silicon stage. So, for the post-silicon phase in 2014 Bao et al. [111] developed an ML-

based model as a reverse engineering approach for the detection of HTs. Specifically, they 

trained an SVM classifier based on high resolution images features from golden and infected 

with HTs circuits layouts. The simulation results showed that the SVM-based classifier was 

able to classify the two classes efficiently. The same group in the study [122] proposed a 

KMeans-based clustering model. The KMeans-based model has developed again via high 

resolution image features from golden circuits and of three types of modifications based on 

the golden circuits which consisted of the infected circuits. Another post-silicon detection 

approach was developed in 2016 by Jap et al. [123]. Specifically, the authors developed an 

SVM-based model for the detection of HTs. The model was trained from a data set consisting 

of SCA-based time features like leakage from normal and infected circuits. Another study 

with ML and SCA techniques was proposed by Xue et al. [124]. In this study, the authors 

developed an SVM-based model for the detection of HTs at the post-silicon stage. The model 

was trained via a data set that consisted of SCA-based power features and specifically 

transient power supply features of normal and infected circuits. The experimental results 
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showed that this method was able to detect with effectiveness the infective from normal 

circuits. Wang et al. [125] proposed another SCA-based method in combination with ML 

techniques for the detection of HTs at the post-silicon phase. Specifically, they developed 

an ELM-based model which was trained from a data set consisting of dynamic power 

features from infected and normal circuits. In the study [126], the authors developed an 

SVM-based model for the detection of HTs via SCA power features. Specifically, they 

developed an SVM-based model which was trained via a data set consisting of SCA-based 

power consumption waveforms features from infected and normal circuits and given. The 

experimental results proved the validity of the method. Liu et al. [127] proposed another 

SCA-based in combination with an ML-based model approach for the detection of HTs at 

the post-silicon phase. They developed an SVM-based model which was trained via SCA 

wireless transmission power waveform features from HTs free and infected circuits. The 

results showed that their method was able to detect effectively wireless transmissions power 

signals produced from HTs. In Table 4.4 is presented a summary of ML-based approaches. 

 

Table 4.4 Summary of ML-based approaches 

Authors Observed 
feature 

Feature 
number 

Positive 
data 

Negative 
data Benchmark Models/ 

Algorithms Results 

[24] 

Features extracted 
from known gate-
level netlists, like 
LGFi, FFi, FFo, 

PI and PO 

5 
118.969 
Trojan 
Nets 

121.452 
Normal 

Nets 

Trust-HUB: 
RS232-T1000, RS232-T1600, 
S15850-T100, S35932-T100, 
S35932-T300, S38417-T100, 
S38417-T300, S38584-T100, 

S38584-T300 

SVM 80% - 
100% TPR 

[25] 
Features extracted 

from gate-level 
netlists, 

11 
429 

Normal 
Nets 

54.782 
Normal 

Nets 

Trust-HUB: 
RS232-T1000, RS232-T1200, 
RS232-T1300, RS232-T1400, 
RS232-T1500, S15850-T100, 
S35932-T100, S35932-T300, 
S38417-T100, S38417-T200, 
S38417-T300, S38584-T100 

EL/RF 74.6% F-
measure 

[26] 

Features extracted 
from netlists, like 
LGFi, FFi, FFo, 

PI and PO 

5 
248 

Trojan 
nets 

1.991 
Normal 

nets 

Trust-HUB: 
RS232-T1000, RS232-T1100, 
RS232-T1200, RS232-T1300, 
RS232-T1400, RS232-T1500, 

RS232-T1600 

SVM 

Type A: 
58.9% 

accuracy 
 

Type B: 
69.5% 

accuracy 
 

Type C: 
65.1% 

accuracy 
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[27] 

Features from 
area, power and 

time analysis 
through DC 

compiler tool 

11 892 18 Trust-HUB: All- Benchmarks GB 100% F1-
score 

[111] 
High resolution 
images from ICs 
golden layouts 

160x160 
pixels 

500 
Trojan 

Addition  
 

500 
Trojan 

Deletion  
 

500 
Trojan 

Parametric  

500 
Trojan 
Free 

Custom 
 

ISCAS 89: 
S27, S298, S280, S15850, 

S38417 
 

ITC 99: 
B18 

SVM 90% 
accuracy 

[122] 

Trojan Free ICs 
golden layout 
images and 3 

types of 
modifications 

produced based 
on these images, 
Trojan Addition, 

deletion and 
parametric 

160x160 
pixels 

500 
Trojan 

Addition 
 

500 
Trojan 

Deletion  
 

500 
Trojan 

Parametric 

500 
Trojan 
Free  

Custom 
 

ISCAS 89: 
S27, S298, S280, S15850, 

S38417 
 

ITC 99: 
B18 

Clustering/ 
K-Means 

Trojan-
Free: 

99.23% 
accuracy 

 
Trojan-

Addition: 
100% 

accuracy 
 

Trojan-
Deletion: 

100% 
accuracy 

 
Trojan-

Parametric: 
98.86% 
accuracy 

[123] 

Features extracted 
from side-channel 

analysis to 
leakage of the 
chip based on 
time samples 

4 N/A 
75.000 
Time 

samples 

Xilinx FPGA Circuit: 
Spartan-6 SVM N/A 

[124] 

Features extracted 
from the transient 

power supply 
currents (IDDT) 

of each simulated 
IC and a Trojan-
free or Trojan-

inserted indicator 

501 50 Trojan 
Infected 

50 
Trojan 
Free 

ISCAS 89: 
S38417, S35932 SVM 

Trojan-
inserted 

ICs known: 
100% 

accuracy 
 

Trojan-
inserted 

ICs 
unknown: 

98% 
accuracy 



35 

[125] 

Features from 
converted power 

consumption 
waveform into the 
frequency domain 

N/A N/A N/A N/A SVM 72.72% 
accuracy 

[126] 

Features from 
side-channel 

analysis, dynamic 
power 

consumption 

N/A N/A N/A N/A ANN/ELM 90% 
success rate 

[127] 

Features consist 
of transmission 

power 
measurements for 

six ciphertext 
blocks 

transmitted by 
each of 40 
Trojan-free 

circuits 

6 

40 Trojan-
I infected 

 
40 Trojan-
II infected 

30 
Trojan 
Free 

Trojan-Free: 
TSMC Microcontroller: 

0.35-μm technology 
 

Trojan-I and Trojan-II: 
Created two HTs, which leak 
the secret key of a wireless 
cryptographic IC consisting 
of an Advanced Encryption 
Standard (AES) core and an 

ultra-wideband (UWB) 
transmitter (TX). 

SVM 
0/10 FP 
and 0/80 

FN 

4.7.3 ML and Simulation based Approaches Conclusions 
ML-based approaches constitute 77% of the total approaches in the ML and Simulation 

category. While the LT simulation approaches 23% (Figure 4.11). As regards the 

benchmark, Trust-HUB and ISCAS 89 were the most used for ML-based approaches while 

ISCAS 89 and ISCAS 85 for LT simulation approaches (Figure 4.12). Finally, as far as 

features were concerned, the most used features for ML-based approaches were netlists as 

well as high resolution images and dynamic power. While for LT simulation approaches 

were netlists, wire and nodes features (Figure 4.13). 
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Figure 4.11 Number of studies in ML and Simulation based approaches category 

 

 
Figure 4.12 Benchmark in ML and Simulation based approaches category 
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Figure 4.13 Features types in ML and simulation-based approaches category. 

4.8 Auxiliary Approaches 

The auxiliary approaches aim to enhance the effectiveness of the detection techniques 

against HTs for the pre-silicon or post-silicon stage. Auxiliary approaches can be categorized 

into two categories, the runtime monitoring approaches and the prevention-facilitation 

approaches. 

Runtime monitoring approaches aim to reduce the catastrophic effects of HTs when these 

viruses are activated. Specifically, these approaches focus on identifying putatively 

undetectable attacks and their effects from time-delayed HT activation. These studies can 

develop techniques that can probe the behavior of signals of interest using finite state 

machines or can generate and run multiple functionally equivalent tests to detect HT attacks. 

Furthermore, these studies can find similar HTs, due to their parallel execution on the circuit 

or to bypass HTs, imitating software HTs. Also, runtime monitoring approaches can detect 

unused circuitry and label it as suspicious using verification tests. Subsequently, suspicious 

circuitry is replaced with a software logic exception which allows the normal performance 

of the system to bypass the HTs. 

On the other, prevention-facilitation approaches aim to increase the difficulty for HT 

insertion into ICs, mainly during the design phase, or facilitate the detection approaches. 

Prevention-facilitation approaches use hardware security techniques like obfuscation, 

layout-filler, path-delay fingerprinting to enhance the detection of HTs. The obfuscation 

technique changes the transition mode of the circuit providing the ability to operate in two 
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different modes; normal and obfuscated. The normal mode produces the desired output for 

the circuit, while the obfuscated allows the circuit to malfunction in some of the input 

patterns. The use of this technique makes the insertion of a malicious circuit into a system 

more difficult. Layout-filler techniques are used to fill the empty spaces of a circuit with 

filler cells to prevent the insertion of additional components. However, these techniques 

cannot prevent the malicious conversion of a transistor set or the addition of a circuit that 

does not require additional layout space. Another way to detect HTs is based on synthesis 

algorithms based on path-delay fingerprints. These techniques improve the HTs detection 

probability by minimizing the maximum delay shortest path of the circuits. 

4.8.1 Runtime Monitoring Approaches 
In 2015 Ngo et al. [112] developed a runtime monitoring approach for the detection of HTs. 

Specifically, they developed an assertion approach for identifying and validating high-level 

important behavioral invariants through an integrated on the circuit, hardware property 

checker. The results showed that this approach could detect HTs in circuits with varying 

system overhead and modify the protection levels correspondingly. In the study [128], the 

authors developed a general methodology based on runtime monitors for the identification 

and detection of HTs attacks through burst mode communication. Specifically, they designed 

a runtime monitor approach based on the analysis of vulnerable paths. The statistical and 

experimental analysis showed that this technique had low area and power overhead 

compared to other monitor approaches and could easily be used without requiring extra 

information of IP modules. Furthermore, authors in the study [129], developed three low-

overhead runtime approaches based on power/thermal features of infected and normal 

circuits for the detection of HTs. The first approach was a sensor-based approach based on 

thermal features extracted from the thermal sensors. In the second approach was used a filter 

known as the Kalman filter for the tracking of circuits thermal profiles. The third approach 

combined the Kalman filter with leakage power features of the circuits to track the thermal 

profiles. The simulation results verified that all the approaches were able to detect HTs 

effectively. In Table 4.5 is presented the summary of RM approaches. 

 

Table 4.5 Summary of RM approaches 

Authors 
Observed 
Features 

Feature 
Number Functionality Benchmark Type 
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[112] 
Critical 

behavioral 
invariants 

Features 
number adapt 
according to 
the circuit 

Configurable 
Security 
Monitor 

Microcontroller Circuit: 
LEON3 Simulation 

[128] 
Handshaking 

protocol 
features 

Features 
number adapt 
according to 
the circuit 

Configurable 
Security 
Monitor 

Trust-HUB: 
AES-T100, AES-T1000, AES-T1100, 
AES-T1200, AES-T1300, AES-T1400, 
AES-T1500, AES-T200, AES-T2000, 
AES-T2100, AES-T300, AES-T400, 
AES-T500, AES-T600, AES-T700, 

AES-T800, AES-T900 

Experimental 

[129] Thermal and 
power profiles 2 

Variant-
Based 

Parallel 
Execution 

Trust-HUB: 
AES-T1700, BasicRSA-T200, MC8051-
T300, MC8051-T400, MC8051-T600, 
RS232-T400, RS232-T900, S38417-

T300, PIC16F84-T100, PIC16F84-T200 

Simulation 

4.8.2 Prevention & Facilitation Approaches 
An obfuscation-based technique was developed by Kamali et al. [130]. The authors 

developed an obfuscation-based method via embedded key features for the protection of ICs 

against HTs attacks. The simulation results showed that their method could defend ICs 

effectively. The same group in the study [131] proposed again an obfuscation-based method 

for the defense of IP-piracy and reverse engineering approaches via the replacement of parts 

of logic design with programmable logic routing blocks. In 2012 Salmani et al. [110] 

developed an improving HTs detection technique based on analysis of the transition 

generation time and dummy flip-flop insertion. Specifically, the authors developed a method 

based on dummy multiplexors to be able to remove rare trigger conditions, reduce the 

transition generation time, and increase the activity of HTs for the detection of HTs. In the 

study [132], the authors proposed a layout-filler based on a dummy circuit insertion 

technique against HTs attacks. This technique is identified and replaced the unused resources 

of a circuit with dummy logic cells. Experimental results showed that the proposed study 

was effective for Field Programmable Gate Arrays (FPGAs) with no cost on power or 

performance. In 2014 Nejat et al. [133] developed an approach for improving HT detection 

based on path-delay fingerprinting and an effective test-vector selection scheme. The 

fundamental idea behind this method was to test the circuit at the appropriate frequencies. 

Each path was examined at a clock cycle with a period equal to the path's delay. The results 

showed that this method improves the detection of HTs with low area overhead. The same 

group in the study [134], developed a path-delay fingerprinting-based method for the 
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detection of HTs. Specifically, they developed a logic-level synthesis retiming algorithm 

that shortened for each node of a circuit the connection paths to minimize the communication 

delay. The results showed that the shorted paths improve the detection of HTs. In Table 4.6 

is presented the summary of PF approaches. 

 

Table 4.6 Summary of PF approaches 

Authors 
Observed 
Features 

Feature 
Number Functionality Benchmark Type 

[130] 
Several 

embedded key 
numbers 

1 Obfuscation 
ISCAS 85: 

C2670, C3540, C5315, C6288, 
C7552 

Simulation 

[131] 

Fully 
programmable 

logic and routing 
blocks 

2 Obfuscation 

ISCAS 85: 
C432, C499, C880, C1355, 

C1908, C2670, C3540, C5315, 
C7552 

Simulation 

[110] 

Features based on 
average clock 

cycles per 
transition 

1 Dummy Circuit Insertion ISCAS 89: 
S38417 Simulation 

[132] 
Low-level 

dummy logics 
(LLDLs) 

N/A Layout Filler Xilinx FPGA Circuit: 
Virtex-II Experimental 

[133] 
Features based on 

path-delay 
fingerprinting 

1 

Improvement of HT detection 
based on path-delay fingerprinting 

and an effective test-vector 
selection scheme 

ISCAS 89: 
S713, S1423, S5378, S13207, 

S35932 
Experimental 

[134] 
Features based on 

path-delay 
fingerprinting 

1 

Enhance HTs detection based on 
the improvement of the path-delay 

fingerprinting technique via a 
logic-level synthesis retiming 

algorithm 

ISCAS 89: 
S208, S344, S1196, S1238, 

S1494, S9234, S13207, S38417 

Simulation/ 
Experimental 

4.8.3 Auxiliary Approaches Conclusions 
PF approaches constitute 67% of the total approaches in the Auxiliary category. While the 

RM approaches 33% (Figure 4.14). As regards the benchmark, Trust-HUB and custom 

circuits were the most used for PF approaches, while ISCAS 89 and ISCAS 85 for RM 

approaches (Figure 4.15). Finally, the most used feature for PF approaches was the delay. 

While for RM approaches the most used features were thermal power, handshaking protocol 

and behavioral invariants features (Figure 4.16). 
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Figure 4.14 Number of studies in Auxiliary based approaches category 

 

 
Figure 4.15 Benchmark in Auxiliary based approaches category 
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Figure 4.16 Features types in Auxiliary based approaches category 

4.9 Countermeasures Against Hardware Trojans Conclusions 

Since 2007, HT detection techniques have emerged as necessary tools for maintaining the 

reliable, secure and highly stable operation of virtually every available IC type. Depending 

on the underlying mechanism, the functionality and the manufacturing phase at which an HT 

detection method operates, we have grouped available techniques in three categories. Each 

category was further subdivided depending on specific functionalities related to the detection 

process. SCA-based approaches consist 24% (7 out of 29) of the total examined approaches. 

On the other, ML-based and simulation approaches consist 45% (13 out of 29) of the total 

approaches while the Auxiliary approaches consist of the remaining 31% (9 out of 29) 

(Figure 4.17). 

As regards the benchmark, ISCAS 89 was the most frequently utilized benchmark with 34% 

(10 out of 29) of the total amount of studies. ISCAS 89 is especially used from ML-based, 

LT simulation and PF approaches. The next most used benchmark was the custom circuits 

with 24% (7 out of 29) and used especially for SCA-based power analysis and ML-based 

approaches. While the next most used benchmark was ISCAS 85 and Trust-HUB with 17% 

(5 out of 29) respectively. ISCAS 85 is mostly used for SCA-based power analysis and 

auxiliary PF approaches and Trust-HUB from RM and ML-based approaches (Figure 4.18). 

Depending on the mode of operation and functionality, HT detection studies relied on a wide 

spectrum of features for training their models or extracting decision making rules. Delay, 

netlist and transient supply current were the most frequently used features. Specifically, the 
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delay was the most frequently used feature with 17% (5 out of 29) and was used mostly for 

SCA-based time analysis and PF approaches. While netlist and transient supply current were 

the next most used features with 14% (4 out of 29) respectively. Netlists are used exclusively 

for ML-based approaches and transient supply current for SCA-based power analysis 

approaches. The remaining studies depended on high-resolution imaging, dynamic and 

quiescent supply current power (Figure 4.19). 

 

 
Figure 4.17 Number of studies for all the categories 
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Figure 4.18 Benchmark for each countermeasure category 

 

 
Figure 4.19 Features types for each countermeasure category 
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 GAINESIS: Generative Artificial Intelligence NEtlists 

SynthesIS 

5.1 Introduction 

In this chapter, we present our methodology. We list the steps needed to create an ML-based 

model as well as we mention the importance of the data set and the features. We present with 

details our scheme and finally, we analyse each step of our scheme in detail. 

Must be mentioned that developing a model based on the principles of ML or DL is a costly 

process in both time and computing power. Depending on the problem, the size of the data 

set, the size, type and quantity of features contained in the data set as well as the algorithms, 

and the set of parameters that will be used and combined for the development of the new 

ML or DL-based model, time and computing power can vary significantly from model to 

model. Until today, ML-based models need significantly more time for training and testing 

than DL-based models. The reason is that ML-based algorithms for the development of a 

model are built to use the Computer Process Unit (CPU) and not the Graphic Process Unit 

(GPU). On the other, DL-based algorithms can use either CPU or GPU for the training and 

evaluation of the development model. In Figure 5.1 we present the steps for the development 

of an ML or DL-based model. 

The development of GAINESIS was based on Python v3.6 [135] and all benchmarks were 

performed on an Intel X-Series I7-7740X computer system equipped with the NVIDIA GTX 

1060 GPU. Tensorflow-GPU v1.3 [136], Keras v2.0 [137], Scikit-learn [138], the XGBoost 

library [139] and Jupyter Notebook [140] environment was used to develop all the tested 

GAN and ML models. 
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Figure 5.1 Steps for the development of an ML or DL-based model 

5.2 Scheme of GAINESIS Methodology 

Initially, all circuit benchmarks in Verilog format (1) were downloaded from the Trust-HUB 

repository. Design Compiler NXT and the FreePDK45nm open cell library were used to 

design the GLN phase of the circuits, a process also known as GLN synthesis (2). 

Subsequently, in-house scripts were developed to generate and extract area, power and time 

analysis features for each of the designed GLN benchmarks (3). The initial real data set 

consisted of 880 samples, 18 TF and 862 TI, and the features utilized (N = 11) were number 

of ports, number of nets, number of cells, number of sequential cells, number of references 

(number of multiplexers and number of gates), net switching power, total dynamic power, 

combinational switching power, combinational total power, total switching power and total 

power (4). For the development of our initial real-data-based data set classifier we split our 

initial real data set into two sets, a training (80%, 704 samples) and a test (20%, 176 samples) 

set (5 and 6). The training of the seven ML-based classifiers was implemented based on the 

training set. Specifically, the seven models are based on seven algorithms, GB [82], k-nearest 

neighbors (KNN) [90], logistic regression (LR) [98], multilayer perceptron (MLP) [41], RF 

[83], SVM [93] and XGB [139]. It is worth mentioning that XGB was used for the first time 

for the classification of HTs at the GLN phase. For the development of each classifier, we 

used and combined a variety of hyperparameters to optimize each classifier (7). For our 

initial real data set we selected the best-performing classifier based on Precision, Sensitivity, 

Specificity and F1-score metrics (8), which was a GB-based classifier (9). 

Next, we explored our real training data set and found that TI circuits have a larger area and 

consume more power compared with TF circuits (10). From the exploration of our real data 

set, it became evident that the Trust-HUB initial real data set is highly imbalanced. We 
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postulated that GANs can be used to remedy this problem and provide arbitrary numbers of 

synthetic TF and TI feature vectors for training robust ML classifiers. Four GAN models 

were developed based on the vanilla GAN [84], CGAN [85], WGAN [86], and WCGAN 

[87] algorithms. After the training of our four models, we optimized and evaluated them 

(11), and we picked the models with the best and the worst performances (12 and 13). Next, 

we synthesized new generated data sets based on our best and our worst-performing models 

(14 and 15). We combined the new generated data sets from our best and worst models with 

the initial real training data set to produce our mixed data sets (16 and 17). 

Furthermore, we used all of the new data sets for the development and comparison of our 

new GB-based classifiers (18). For the development of the new GB-based classifiers, each 

of the data sets was split into two sets, a test (20%) set and a training (80%) set (19 and 20). 

Again, the training of the new GB-based classifiers was implemented based on the training 

sets (21) and their evaluation was implemented based on the test sets. We selected as the 

new improvement GB-based classifier the best-performing classifier based on Precision, 

Sensitivity, Specificity and F1-score metrics (22), which was the GB-WCGAN-Mixed-600-

based classifier (23). 

Our next step was to compare our initial real GB-based classifier with our new best GB-

WCGAN-Mixed-600-based classifier. Thus, we evaluated our GB-WCGAN-Mixed-600-

based classifier with our initial real test set (24). Finally, our last step was to compare our 

best GB-WCGAN-Mixed-600 classifier with existing methods (25). Our scheme is 

illustrated in Figure 5.2. It needs to be mentioned that for the development of ML-based 

models, we used a 10-fold cross-validation process, which was repeated 50 times on each 

training set. The performance of the algorithms on the test set was implemented using a score 

cutoff of 0.5. 
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Figure 5.2 Scheme of our Artificial Intelligence-based approach for safeguarding 

integrated circuits at gate-level netlist phase against hardware Trojans, GAINESIS. 

5.3 Data set 

Every year more and more ML/DL-based approaches are developed as countermeasures 

against HTs. These approaches are aimed at classifying or detecting infected with HTs 

circuits from normal uninfected circuits. Also, some approaches are used to enhance the 

classification or detection methods. So, the development of these types of approaches needs 

a quality data set that will contain a sufficient number of quality samples and features to be 

able to train the ML/DL-based model more efficiently. 

The data set can be divided into three categories, structured, unstructured and semi-

structured. Structured data is data that follows a pre-defined data model and is thus easy to 

analyze. Structured data is presented in a tabular format, including relationships between 

rows and columns. Excel files and SQL databases are common examples of structured data. 

Each of them has sortable organized rows and columns. Unstructured data is information 

that lacks a predefined data model or is not organized in a specific way. Common examples 

of unstructured data include text, image, video or audio files. Semi-structured data is a type 

of structured data that does not follow the rules of structured data. However, tags or other 

markers are used to distinguish semantic pieces and enforce hierarchies of records and fields 

inside the data. Examples of semi-structured data include JSON and XML files. 
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As mentioned, the data set plays a significant role in the development of a robust ML- or 

DL-based model. Specifically, the data set before being used for the development of a model, 

must be cleared from unnecessary values and organised. For example, the data set must be 

checked for consistency, cleared of zeros and/or unspecified values, and labeled where 

needed. An unreliable data set like a data set with imbalanced samples per class leads to the 

development of unreliable models. A type of unreliable model is a model that was learned 

to over-classify a class compared with another class. Due to the lack of samples for a class, 

the model has learned to under-classify this class compared with the other one. 

Must be mentioned that each sample or feature represents a measurable piece of data that 

can be used for analysis. The features which are included in a data set can vary widely 

depending on the problem which is analyzed. Features are the basic building blocks of the 

data set. The quality of the features in a data set has a major impact on the quality of the 

insights which will be gained during the development of the model. For the development of 

a model, the developer must understand the goals of the project and select the values of the 

appropriate features for the training of the model. There are various techniques for improving 

the quality of a data set features like feature selection and featuring engineering. These 

techniques require extensive user experience for proper application. For the creation of the 

model the features which will be used must be scaled. Scale methods transform features by 

scaling each feature to a given range. The most common scale methods are standard and 

min-max scale methods. Standard scaler assumes data is normally distributed within each 

feature and scales them such that the distribution is centered around 0, with a standard 

deviation of 1. Centering and scaling happen independently on each feature by computing 

the relevant statistics on the samples in the training set. On the other, the min-max scaler 

scales and translates each feature individually such that it is in the given range on the training 

set, e.g., between zero and one. This scaler shrinks the data within the range of -1 to 1 if 

there are negative values. We can set the range like [0,1] or [0,5] or [-1,1]. Below are 

presented data sets that were built and used for the training of models as countermeasures 

against HTs. 

5.3.1 Initial Data Set Development 
As mentioned, the process of data set development is the most critical step for the 

development of a robust ML model. In this instance, the data set should consist of circuits 

with diverse types, sizes and HT functions. We developed our data set by analyzing all 

benchmarks accessible in the Trust-HUB benchmark library, but we were not able to meet 
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all the requirements of diversity in size and function through the lack of diversity in terms 

of the size and function of Trust-HUB benchmarks. Our first step was to design, with the 

Design Compiler NXT tool and FreePDK45nm circuit library [141], the TF and TI circuit 

benchmarks of Trust-HUB, which were in Verilog form. Next, with custom scripts we 

extracted area, power and time features from the design analysis produced from the Compiler 

NXT tool. The initial extracted features were 51 in number, but many produced zero or not 

available feature values. So, we cleaned our data set of these features and prepared it for the 

development of our method. As a result, our data set consisted of 11 features: five area and 

six power analysis features (Table 5.1). Specifically, the five area features were the number 

of ports, nets, cells, and sequential cells, as well as the number of gates and multiplexers, or 

according to the Design Compiler NXT the number of references, which is how we report it 

in this thesis. The six power features were the net switching power, combinational switching 

power, total switching power, total dynamic power, combinational total power, and total 

power of each designed circuit. So, our initial real data set consisted of a total of 880 

designed circuits. From the 880 circuits, 18 were normal or TF circuits which consisted of 

positive samples with a class label equal to one (label = 1). The 862 were modified normal 

circuits infected with HTs or TI, which consisted of negative samples with a class label equal 

to zero (label = 0). It must be mentioned that we named our initial real data set the REAL-

880 data set. So, our initial REAL-880 data set consisted of a total of 880 designed samples. 

From the 880 samples, 18 were TF and 862 were TI. For the training, we used 704 samples, 

14 TF and 690 TI (80%), and for the evaluation 176 samples, 4 TF and 172 TI (20%). 

 

Table 5.1 Table with our eleven area and power analysis features 

Analysis Feature 

Area 

Number of ports 
Number of nets 
Number of cells 

Number of sequential cells 
Number of references 

Power 

Net switching power 
Total dynamic power 

Combinational switching power 
Combinational total power 

Total switching power 
Total power 
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5.4 Machine Learning Classifiers Development 

The next step for the development of an ML-based model includes the selection of a suitable 

ML-based algorithm for the training of our model. For the development of an ML-based 

model, there is often more than one algorithm that can be used. The type of problem for 

which we aim to build our model is the most important criterion for selecting the most 

suitable algorithm for its development. According to this criterion, we can choose more than 

one algorithm which is indicated as a solution for our problem. Another criterion consists of 

the structure of the data set which will be used for the training and evaluation of the model. 

According to the features of the data set maybe we need to choose other types of algorithms. 

Also, it is significant to know the complexity and the speed of each algorithm, because each 

algorithm needs specific computing power, according to the parameters uses for the 

development of a model. There is a case that we cannot build our model due to lack of 

computer power. Must be mentioned that choosing more complex algorithms does not 

necessarily mean that it will achieve maximum results.  

The process of training a model is the most important step of ML methodology because 

according to this step we produce our final ML-based model. Each training step consists of 

updating the weights and the biases. Training a model simply means learning/determining 

good values for all the weights and biases based on our data set samples. A model can be 

created based on labeled data samples in supervised learning and trying to leak inferences 

from not labeled data in unsupervised ML. For the training to be used a set of 

hyperparameters needs to update the weights to have better results from cycle to cycle. So, 

as the number of training steps grows then we can get more accurate results. However, before 

getting into the training process we should tweak the parameters of the model and experiment 

with the different results, to get the optimal ones. 

To be able to develop our ML-based classifier for our REAL-880 data set we trained and 

optimized seven ML-based classification models. It must be mentioned that for the training 

and optimization of each classifier we used a combination of the appropriate 

hyperparameters based on each ML-based algorithm, which consisted of a wide range of 

values. The values given in each parameter were related to the type and size of the features 

of the training set, as well as to the computing power of our system. 
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5.4.1 GB-based Classifier 
GB as mentioned consists of a member of the model family and can handle features with 

low predictive power internally. GB models are parts of ensemble learning algorithms, 

which rely on a collective decision from inefficient prediction models known as decision 

trees. During the boosting step, each new tree is based on a modified version of the original 

data set. To begin, GB constructs a decision tree and assigns equal weight to each 

observation. Following the initial tree assessment, the weights for the easy-to-classify 

observations decrease while the weights for the difficult-to-classify observations grow. 

Then, the next tree grows on the weighted data, attempting to enhance the first tree's 

predictions. The new model is an amalgamation of the first and second trees. The 

classification error is calculated, and a third tree is built to forecast the corrected residuals. 

This technique is performed for a set number of iterations until convergence is reached. The 

final ensemble model's forecast is the weighted total of the predictions provided by all 

previous model iterations. The most common hyperparameters for the training of GB-based 

models are learning rate, number of estimators, max tree depth and max features. Number 

of estimators consists of the total number of sequential trees to be modeled. Max tree depth 

parameter controls the depth of the individual trees. And max features parameter is the 

number of features that will be used for the best split of the model. In Figure 5.3 is presented 

a typical structure of a GB algorithm. 

 

 
Figure 5.3 GB algorithm 

GB-based classifier development is based on the combination of four hyperparameters: 

learning rate, max tree depth, number of estimators and max features. The hyperparameter 

learning rate controls the gradient descent by evaluating the contribution of each tree to the 

final result. For the training of our GB-based classifier we used a list of learning rate values 

from 0.05 to 1. The number of estimators hyperparameter represents the total number of 

sequential trees to be modeled. We used a list of the number of estimators, with values from 

10 to 100. The max tree depth hyperparameter controls the depth of the individual trees. We 
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used a list of max tree depth values from 1 to 10. Furthermore, the max features parameter 

represents the number of features that will be used for the best split. A list of max features 

values from 1 to 11 was used. The best combination of hyperparameters for our REAL-880 

data set was: learning rate 0.05, number of estimators 10, max tree depth 11 and max features 

10. In Table 5.2 are presented the range of the hyperparameters used and combined for the 

development of our GB-REAL-880 classifier. Also, in Figure 5.4 are presented the 

histograms with the most important features for the development of our GB-REAL-880 

classifier. The “conditional total power” with “numbers of ports” and “number of cells” were 

the most important features. Those features helped our model to increase the classification 

between the two given classes. 

 

Table 5.2 Table with the range of hyperparameters for the GB-REAL-880 classifier 

Hyperparameter Range 
Learning rate 0.05 – 1 

Number of estimators 10 – 100 
Max tree depth 1 – 10 
Max features 1 – 11 

 

 
Figure 5.4 Feature importance for GB-REAL-880 classifier 

5.4.2 KNN-based Classifier 
KNN is a type of IB learning that can be used for solving supervised regression and 

classification problems simply and easily. The KNN algorithm is based on the assumption 

that the same things exist in a close area. In other words, similar things are close to one 
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another. KNN is based on the idea of similarity (also known as distance, proximity, or 

closeness) figuring the space between points on a graph. There are various methods of 

calculating distance, and one way might be preferable depending on the problem. The KNN 

algorithm is initially loaded with the training data set, which is commonly referred to as x, 

and their goal values, which are referred to as y. Goal value y needs to be classified. Then is 

initialized k to a preferable number of neighbors and for each data sample is computed the 

distance between the sample whose target value is wanted to classify. Next, are added both 

the index and the distance of the query example to an ordered list of indices and distances 

and sort this list in ascending order (from smaller to bigger), with the distance as order 

criteria. Finally, are picked the first k entries from the sorted list are got the labels of the 

selected k entries. So can be returned in the form of the k labels. Some of the most often 

used hyperparameters for the training of a KNN-based model are a number of neighbors, 

leaf size and weights metrics. A number of neighbors are used to returned indices of and 

distances to the neighbors of each point. Leaf size parameter that is to say the maximum 

number of points a node can hold. Weights parameter is used to approximate the optimal 

degree of influence of individual features using a training set. When successfully applied 

relevant features are attributed a high weight value, whereas irrelevant features are given a 

weight value close to zero. In Figure 5.5 is presented a typical structure of a KNN algorithm. 

 

 
Figure 5.5 KNN algorithm 

For the development of our KNN-based classifier, we used five hyperparameters: number of 

neighbors, distances, leaf size and weights. The number of neighbors hyperparameter is the 

core deciding factor. For this hyperparameter, we used a list of values from 1 to 60. Distances 

were used for the KNN classifier to be able to calculate the distances between the point and 

points in the training set. On this occasion, we used a list of distance values from 1 to 10. 

The leaf size parameter defines the maximum number of points a node can hold. We used a 

list of leaf size values from 1 to 50. The weights parameter gives more weight to the points 

which are nearby and less weight to the points which are farther away. The uniform and 
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distance weights were used for the training and optimization of our KNN-based model. The 

best combination of hyperparameters for our REAL-880 data set was: number of neighbors 

1, distances 1, leaf size 1 and weights ‘uniform’. In Table 5.3 are presented the range of 

hyperparameters used and combined for the development of our KNN-REAL-880 classifier 

for the real data set. 

 

Table 5.3 Table with the range of hyperparameters for the KNN-REAL-880 classifier 

Hyperparameter Range 
Number of neighbors 1 – 60 

Distances 1 – 10 
Leaf size 1 – 50 
Weights uniform, distance 

5.4.3 LR-based Classifier 
LR is a supervised ML algorithm used for classification problems, and specifically for 

categorizing observations into a group of discrete classes. Although linear regression assigns 

observations to a continuous number of values, LR applies on its output a transformation - 

activation – function, called the logistic sigmoid function. It returns a probability value 

which can then be matched with two or more classes. LR is used when the target – dependent 

- variable is categorical. For example, to predict whether an email is a spam (1) or not (0) 

(binary LR) or to predict whether a car with specific characteristics belongs to a model, etc. 

(multiclass LR). In Figure 5.6 is presented a typical structure of an LR algorithm. 

 

 
Figure 5.6 LR algorithm 

For the training and optimization of our LR-based classifier, we used four hyperparameters: 

solver, penalty, C and max iterations. The solver hyperparameter solves optimization 

problems of the LR algorithm through coordinate descent (CD) algorithms. For this 

parameter, we used Newton-CG [142], limited-memory Broyden–Fletcher–Goldfarb–
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Shanno (LM-BFGS) [143], library large-scale linear LIBLINEAR [144], stochastic average 

gradient (SAG) [145] and SAGA [146] CD algorithms. Penalties were used to shrink the 

coefficients of the less contributed variable toward zero. We used three types of penalties: 

l1, l2 and elasticnet. The C parameter controls the penalty strength; we used a list of C values 

from 0.01 to 1000. The max iterations parameter is the maximum number of iterations taken 

for the solvers to converge. A list of max iterations values from 100 to 7000 was used. The 

best combination of hyperparameters for our REAL-880 data set was: solver ‘Newton-CG’, 

penalty ‘l2′, C 0.01 and max iterations 100. In Table 5.4 are presented the range of 

hyperparameters used and combined for the development of our LR-REAL-880 classifier 

for the real data set. 

 

Table 5.4 Table with the range of hyperparameters for the LR-REAL-880 classifier 

Hyperparameter Range 
Solver newton-cg, lm-bfgs, liblinear, sag, saga 
Penalty l1, l2, elasticnet 

C 0.01 – 1000  
Max iterations 100 – 7000 

5.4.4 MLP-based Classifier 
ANNs are built as the model of neurons present in the human brain. Based on the philosophy 

of ANNs the algorithm MLP consists of a feedforward ANN that generates a set of outputs 

from a set of inputs. Specifically, an MLP is a neural network that connects multiple layers 

in a directed graph, meaning that the signal route across the nodes is only one direction. 

Aside from the input nodes, each node has a nonlinear activation function. MLP is frequently 

utilized for supervised learning tasks. Common hyperparameters for an MLP model are 

hidden layer sizes, activation, solver, alpha, max iterations and learning rate. Hidden layers 

size is used for the creation of the hidden layers. The hidden layers are produced according 

to the size value. Also, the hidden layer simply produces layers of mathematical functions 

each designed to produce an output specific to an intended result. Activation hyperparameter 

consists of an activation function that defines how the weighted sum of the input is turned 

into an output from a node or nodes in a network layer. Solver parameter represents a 

stochastic gradient descent-based optimizer for optimizing the parameters in the 

computation graph. The alpha parameter is a regularization term, also known as a penalty 

term, that combats overfitting by limiting the size of the weights. Increasing alpha may 
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alleviate high variance by encouraging smaller weights, resulting in a decision boundary plot 

with fewer curvatures. An iteration is the number of times a batch of data is processed by 

the algorithm. In the context of neural networks, this refers to the forward and backward 

passes. As a result, each time you run a batch of data through the ANN, you complete an 

iteration. The learning rate, in particular, is an adjustable hyperparameter used in neural 

network training that has a tiny positive value, typically in the range of 0.0 to 1.0. The 

learning rate determines how quickly the model adapts to a new situation. It could be the 

model's most essential hyperparameter. In Figure 5.7 is presented a typical structure of an 

MLP algorithm. 

 

 
Figure 5.7 MLP algorithm 

For the training optimization of our MLP-based classifier, six hyperparameters were used: 

hidden layer sizes, activation, solver, alpha, max iterations and learning rate. The hidden 

layer sizes parameter defines the number of hidden layers of the network. A list of hidden 

layer size values from 10 to 50 was used. The activation function parameter was used to 

introduce non-linearity into the output of a neuron. A neural network has neurons that work 

in correspondence to weight, bias and their respective activation function. We used four 

types of activation function: identity, logistic, Tanh and ReLU. The solver parameter 

represents a stochastic gradient descent-based optimizer for optimizing the parameters in the 

computation graph. We used LM-BFGS, SGD and Adam optimizer. Alpha is a parameter 

for the regularization term, which combats overfitting by constraining the size of the weights. 

A list of alpha values from 0.001 to 0.9 was used. The maximum number of iterations 

parameter determines the solver. The solver iterates to this number of maximum iterations. 

A list of 100–1000 values from the maximum number of iterations was used. The learning 

rate parameter controls the rate of speed at which the model learns. We used three types of 

learning rate: constant, adaptive and invscaling. The best combination of hyperparameters 

for our REAL-880 data set was: hidden layer sizes 30, 30, 30, activation ‘ReLU’, solver 

‘Adam’, alpha 0.0001, max iterations 500 and learning rate ‘constant’. In Table 5.5 are 
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presented the range of hyperparameters used and combined for the development of our MLP-

REAL-880 classifier for the real data set. 

 

Table 5.5 Table with the range of hyperparameters for the MLP-REAL-880 classifier 

Hyperparameter Range 
Hidden layer sizes 10 – 50 

Activation identity, logistic, tanh, relu 
Solver lm-bfgs, sgd, adam 
Alpha 0.001 – 0.9 

Max iterations  100 – 1000 
Learning rate constant, adaptive, invscaling 

5.4.5 RF-based Classifier 
RF consists of a summation of Decision Trees. The general idea of this technique is that a 

mixture of learning models raises the general result. RF builds multiple decision trees and 

merges them together to achieve the preciseness and stability of the prediction. In that way, 

it prevents overfitting by creating random subsets of the features, building smaller trees using 

these subsets and combining them to increase the overall performance. RF categorizes a 

sample to the class with the maximum “votes” among each subtree. RF makes the model 

more random while developing the trees. Rather than looking for the most significant feature 

while splitting a node, it scans for the best element among a random subset of features. This 

outcome in a wide variety that by and large results in a greater model. Some of the most 

common hyperparameters for the training of an RF-based model are a number of estimators, 

max features, max depth and min sample leaf. Number of estimators is the number of trees 

that are used to construct before calculating the maximum voting or prediction averages. A 

greater number of trees improves performance but needs more computer power. Max 

features parameter is used to determine the maximum number of features RF is allowed to 

try an individual tree. For instance, if the total number of variables is 100, we can only take 

10 of them in the individual tree. Max depth parameter represents the depth of each tree in 

the forest The deeper the tree, the more splits it has and the more information it captures 

about the data. Min sample leaf parameter represents the minimum number of samples 

required to be at a leaf node. In Figure 5.8 is presented a typical structure of an RF algorithm. 
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Figure 5.8 RF algorithm 

For our RF-based classifier training optimization, we used four hyperparameters: number of 

estimators, max features, max depth and min sample leaf. The number of estimators 

parameter defines the number of trees in the algorithm. We used a list of the number of 

estimator parameter values from 100 to 5000. The max features parameter defines the 

number of features to consider when looking for the best split. We used auto, sqrt and log2 

max feature values. The max depth parameter represents the depth of each tree in the forest. 

The deeper the tree, the more splits it has, and it collects more information about the data. A 

list of max depth values from 2 to 50 was used. The min sample leaf parameter consists of 

the minimum number of samples required to be at a leaf node. We used values from 1 to 20 

for this parameter. The best combination of hyperparameters for our REAL-880 data set was: 

number of estimators 200, max features ‘auto’, max depth 10 and min sample leaf 2. In Table 

5.6 are presented the range of hyperparameters used and combined for the development of 

our RF-REAL-880 classifier for the real data set. 

 

Table 5.6 Table with the range of hyperparameters for the RF-REAL-880 classifier 

Hyperparameter Range 
Number of estimators 100 –5000 

Max features auto, sqrt, log2 
Max depth 2 – 50 

Min sample leaf 1 – 20 

5.4.6 SVM-based Classifier 
SVM is an algorithm intrinsically for binary problems. SVMs transform the input feature 

space into higher-dimensional feature space using the kernel trick dot product. Each data 

set’s sample distance can be found to a given dividing hyperplane. Margin is called the 

minimum distance from the samples to the hyperplane. The transformed data can be 

separated using a hyperplane, the dividing curve between distinct classes. The optimal 

hyperplane maximizes the margin. Its goal is to classify a new sample by simply computing 
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the distance from the hyperplane. Based on global optimization, SVMs deal with overfitting 

problems, which appear in high-dimensional spaces, making them appealing in various 

applications [147][148]. Most used SVM algorithms include the support vector regression 

[149], least squares SVM [150] and successive projection algorithm-SVM [151]. In other 

words, an SVM is a linear separator that focuses on creating a hyperplane with the largest 

possible margin. Its goal is to classify a new sample by simply computing the distance from 

the hyperplane. On a two-dimensional feature space, the hyperplane is a single line dividing 

the two classes. On a multi-dimensional feature space, where the data are non-linearly 

separable an SVM cannot linearly classify the data. In this case, it uses the kernel trick. The 

main concept has to do with the fact that the new multidimensional feature space could have 

a linear decision boundary which might not be linear in the original feature space. Common 

in use SVM hyperparameters is C, gamma and kernel. The C parameter instructs the SVM 

optimizer how much you wish to avoid misclassifying each training example. For large 

values of C, the optimization will select a smaller-margin hyperplane if it does a better job 

of accurately classifying all of the training points. The gamma parameter defines how far a 

single training example's impact extends, with low values indicating 'far' and large values 

indicating 'near.' The gamma parameters can be thought of as the inverse of the radius of 

influence of samples chosen as support vectors by the model. A kernel function is a way for 

taking data as input and transforming it into the needed form for processing. The term 

"kernel" is chosen because the collection of mathematical functions utilized in SVM 

provides a window through which data can be manipulated. In Figure 5.9 is presented a 

typical structure of an SVM algorithm. 

 

 
Figure 5.9 SVM algorithm 

We trained and optimized our SVM-based classifier according to three hyperparameters: C, 

gamma and kernel. The C parameter is a regularization parameter. It controls the tradeoff 

between the smooth decision boundary and classifying the training points correctly. C values 

from 0.0001 to 100 were used. The gamma parameter defines how far the influence of a 
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single training example reaches. We used scale and auto gamma values. The kernel 

parameter specifies the kernel type to be used in the algorithm to improve the classification 

accuracy of the classifier. We used four types of kernels: linear, polynomial, gaussian radial 

basis function (RDF) and sigmoid. The best combination of hyperparameters for our REAL-

880 data set was: C 20, gamma ‘scale’ and kernel ‘poly’. In Table 5.7 are presented the range 

of hyperparameters which used and combined for the development of our SVM-REAL-880 

classifier for the real data set. 

 

Table 5.7 Table with the range of hyperparameters for the SVM-REAL-880 classifier 

Hyperparameter Range 
C 0.0001 –100 

Gamma scale, auto 
Kernel linear, polynomial, gaussian radial basis 

5.4.7 XGB-based Classifier 
XGB belongs to the family of ensemble learning methods. Sometimes, it could be 

insufficient to depend on the results of only one ML method applied to our data. Ensemble 

learning techniques use a systematic method to combine the predictive power of various 

learning methods. The output of this combination is a model that provides the totaled result 

from smaller-weaker- models. Most of the time, we use the XGB algorithm with decision 

trees. 

For the training and optimization of our XGB-based classifier we used three 

hyperparameters: learning rate, number of estimators and max depth. The learning rate 

parameter controls the gradient descent. We used a list of learning rate values from 0.05 to 

1. The number of estimators hyperparameter represents the total number of sequential trees 

to be modeled. We used a list of the number of estimators values from 10 to 100. The max 

tree depth hyperparameter controls the depth of the individual trees. We used a list of max 

tree depth values from 1 to 11. Furthermore, the max features parameter represents the 

number of features that will be used for the best split. A list of max features values from 1 

to 11 was used. The best combination of hyperparameters for our REAL-880 data set was: 

learning rate 0.25, number of estimators 60 and max depth 5. In Table 5.8 are presented the 

range of hyperparameters which used and combined for the development of our XGB-

REAL-880 classifier for the real data set. 
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Table 5.8 Table with the range of hyperparameters for the XGB-REAL-880 classifier 

Hyperparameter Range 
Learning rate 0.05 – 1 

Number of estimators 10 – 100 
Max tree depth 1 – 11 

5.5 Machine Learning Classifiers Evaluation 

Once we have completed the steps of data collection and preparation, and after we select 

algorithms and train our model, it is time to evaluate our model. For the evaluation of our 

model is used a test set which mainly consisted of 20% of the total data set and the samples 

of this set are unknown to our model. For example, in the case of HTs classification, the test 

set consisted of unknown infected and free circuits features which the model will process for 

the first time and needs to classify. 

In this thesis, for the evaluation of the performance of ML algorithms we used Accuracy, 

Precision, Recall or Sensitivity, Specificity, 1-Specificity and F1-score metrics. To evaluate 

the mentioned metrics, we used the values True Positive (TP), False Positive (FP), False 

Negative (FN) and True Negative (TN). The TP value represents the number of TI circuits 

classified as TI, while the FP value represents the number of TF circuits that are wrongly 

classified as TI. On the other hand, the FN value represents the TI circuits that are classified 

as TF, and the TN value represents the number of TF circuits classified as TF. These values 

are used for the calculation of Accuracy (1), Precision (2), Recall (3), Specificity (4), 1-

Specificity (5) and F1 (6) metrics. As mentioned, positive samples indicate the TI circuits 

and our negative samples indicate the TF circuits. Accuracy is defined as the number of 

correct predictions divided by the total number of predictions (1). Precision defines the total 

number of TP values divided by the total number of all positive values (2). Recall defines 

the total number of TP values divided by the total number of TP and FN values (3) and can 

be characterized as the True Positive Rate (TPR). Specificity defines the total number of TN 

values divided by the total number of TN and FP values (4) and can be characterized as the 

True Negative Rate (TNR). 1-Sensitivity defines the total number of FP values divided by 

the total number of TN and FP values (5). F1-score is the harmonic mean of Precision and 

Recall and is defined from the multiplication of Precision by Recall and then by the number 

two divided by the product of Precision and Recall (6). Additionally, based on these metrics 
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we produced the receiver operating characteristic (ROC) and Precision–Recall curves. The 

ROC curve calculates the area under the curve (AUC) which is the measure of the ability of 

a classifier to distinguish between classes and is used as a summary of the ROC curve, while 

average precision (AP) summarizes a Precision–Recall curve as the weighted mean of the 

precisions achieved at each threshold (7). 

 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1) 

Precision = TP/(TP + FP) (2) 

Recall = TP/(TP + FN) (3) 

Specificity = TN/(TN + FP) (4) 

1-Specificity = FP/(TN + FP) (5) 

F1-score = 2(Precision * Sensitivity)/(Precision + Sensitivity) (6) 

AP = ∑ [(Rn − R(n − 1)) ∗ Pn]𝑛𝑛  (7) 

 

From Figure 5.10, it can be observed that for the training set all classifiers had a good 

performance. On the other hand, for the test evaluation set, none of our classifiers performed 

well. Specifically, the GB-based classifier was found to be the best-performing classifier on 

the test set compared with the other six, with 97.72% Accuracy, 74.13% Precision, 62.20% 

Recall and 66.08% F1-score (Figure 5.11). Additionally, good results were returned for 

MLP-based classifier, with 96.59% Accuracy, 61.92% Precision, 61.62% Recall and 61.62% 

and F1-score 61.92%. Thus, according to the results, the GB-based classifier was the most 

efficient. Based on the GB algorithm, we developed and compared our real and our new 

generated data sets. 
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Figure 5.10 Histograms of the performance of our seven ML models on our REAL-880 

training set 

 

 
Figure 5.11 Histograms of the performance of our seven ML models on our REAL-880 test 

set 

5.6 GAINESIS Development 

Our first step for the development of our new synthetic data sets based on our generative 

models was to explore our real training data set. As previously mentioned, the TI class 
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consists of 98% of our total initial real training data set, with 704 samples, and the TF class 

only 2%, with 14 samples. From the exploration of our real training data set, we observed 

that TI samples in their majority had greater mean values compared with TF. This is logical 

because TI circuits are modified TF circuits with HTs and use extra area features such as 

gates, cells, nets, etc., for the construction of the structure of the inserted HT. On the other 

hand, these extra area features need more power. Thus, TI circuits consume more power 

from TF (Figure 5.12). 

 

 
Figure 5.12 Data distributions by feature and class 

As it turns out, our real training data set is inadequate and unequal. The data are the most 

significant part of any ML project. A lack of data samples and a lack of diversity data can 

lead to mediocre ML projects. Additionally, supervised learning models require data, and 

their performance is largely based on the size of the training data available. So, to solve these 

functional problems, we needed to produce more TF samples. In the bibliography exist 

different techniques for data synthesis on ML. In our study, we used a novel state-of-the-art 

technique for data-synthesis-based DL, known as GANs. GANs algorithms mainly are used 

for the field of computer vision and especially for image editing and data generation, and 
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use 2D or 3D (two- or three-dimensional) networks based on convolutional neural networks 

(CNNs). In this thesis, we modified the networks to 1D (one-dimensional) networks based 

on DNNs, because our data set consisted of 1D features. 

To solve these functional problems which occurred from the lack of data samples, we 

developed and compared four generative learning models. As mentioned, we developed four 

models based on four different algorithms, GAN, CGAN, WGAN and WCGAN, for the 

synthesis of new samples. 

5.6.1 GAN, CGAN, WGAN & WCGAN Algorithms 
GL algorithms aim to generate new synthetic samples and they can be applied as a solution 

for the imbalanced data sets. In this section is mentioned GL-based algorithms which can be 

used for the synthesis of new samples for databases cases such as normal and infected 

circuits. For the development of GL-based models must be developed as many models as the 

number of classes that are contained in the data set. Then, depending on the algorithm which 

will be used, there may be a need to applied some clustering algorithms. With the use of the 

clustering algorithms the user will be able to cluster each given class to sub-classes in order 

to be able to use the class label as an extra feature. 

Specifically, GANs consist of two models, a generator and a discriminator. These are trained 

simultaneously by an adversarial process. The generator learns to produce data that look real 

based on real samples, while the discriminator learns to distinguish the real from generated 

data to the point where it is no longer able to distinguish them. CGANs is an architecture 

close to the original GANs, with the only difference being that it makes use of the class 

labels feature. CGAN, with the use of the class labels feature, allows the targeted synthesis 

of a given sample. WGANs are based on the philosophy of GANs, with the difference that 

they use the Wasserstein distance metric for the development of the two models, generator 

and discriminator. The Wasserstein distance metric provides a meaningful and smooth 

representation of the distance between distributions. This algorithm enhances model stability 

during training and gives a loss function that corresponds with sample quality. The last 

algorithm which was used and compared for the generation of new samples was the 

WCGAN. WCGANs have the same functionality as the WGANs, with the difference that 

the CGANs make use of the class labels feature for the training of the generator and 

discriminator models. Next, the hyperparameters that were used to improve the development 

of our four models are presented. 
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For the development of our four models, we used and combined six hyperparameters: 

learning rate, batch size, number of epochs, optimizer, number of units in a dense layer and 

activation function. Each hyperparameter contained a wide range of values. The 

hyperparameter learning rate controls the model in response to the estimated error each time 

the model weights are updated. On this occasion, we used a list of learning rate values from 

0.0001 to 0.001. The hyperparameter batch size defines the number of samples that will be 

propagated through the network. We used a list of batch size values from 16 to 64. The 

number of epochs hyperparameter specifies the time in which the learning algorithm will 

process the whole training data set. We used a different number of epochs values from 1000 

to 50,000. The optimizer hyperparameter affects the attributes of the neural network such as 

weights and learning rate to reduce the losses. For the development of our models, we used 

three optimizers: stochastic gradient descent (SGD) [152], Adam [153] and root mean square 

propagation (RMSprop) [154]. The number of units in a dense layer hyperparameter affects 

the effectiveness of our models. On this occasion, we used different numbers of units in a 

dense layer, from 25 to 512. The activation function hyperparameter describes how the 

weighted sum of the input is turned into an output from a node or nodes in a network layer. 

Specifically, we used three activation functions: rectified linear unit (ReLU) [155], sigmoid 

[156] and hyperbolic tangent (Tanh) [157] (Table 5.9). 

 

Table 5.9 Table with the range of hyperparameters for the generative learning models 

Hyperparameter Range 
Learning rate 0.0001–0.001 

Batch size 16–64 
Number of epochs 1000–50,000 

Optimizers SGD, Adam, RMSprop 
Dense layer 25–512 

Activation function ReLU, sigmoid, Tanh 
 

So, as mentioned for the development of our four models we combined all the values of each 

hyperparameter. The optimum hyperparameters combination was learning rate equal to 

0.0005, batch size equal to 64, number of epochs equal to 50,000, optimizer being Adam, 

number of units in a dense layer equal to 128 for the first layer, and activation function being 

ReLU. It should be noted that for the development of the generator network for each layer, 
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we multiplied exponentially by the number two the number of units in a dense layer, for the 

discriminator network we multiplied by number four the first dense layer, and for the other 

layers we divided it by the number two. Additionally, for the first three dense layers of the 

generator, the best activation function was ReLU, the same as for the discriminator, except 

for the last fourth dense layer of the discriminator network, in which the best activation 

function was sigmoid. The values given in each parameter were related to the type and size 

of the features of the training set, as well as to the ability of the computing power of our 

system. 

In Table 5.10 and Table 5.11 is presented the generator network for each of our four models. 

GAN- and WGAN-based models are different from CGAN and WCGAN because, as 

previously mentioned, CGAN- and WCGAN-based models use as an extra feature the class 

of the sample. Additionally, in Table 5.12 and Table 5.13 is presented the discriminator 

network for each of our four models. The only difference between our models is in the input 

layer, because CGAN- and WCGAN-based models, as previously mentioned, use as an extra 

feature the class of the sample. 

 

Table 5.10 GAN and WGAN models generator network 

Layer Output Parameters 
Input layer 1 (None, 11) 0 

Dense 1 (None, 128) 1536 
Dense 2 (None, 256) 33,024 
Dense 3 (None, 512) 131,584 
Dense 4 (None, 11) 5643 

 

Table 5.11 CGAN and WCGAN models generator network 

Layer Output Parameters 
Input layer 1 (None, 11) 0 
Input layer 2 (None, 1) 0 

Concatenate 1 (None, 12) 0 
Dense 1 (None, 128) 1664 
Dense 2 (None, 256) 33,024 
Dense 3 (None, 512) 131,584 
Dense 4 (None, 11) 5643 
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Concatenate 1 (None, 12) 0 
 

Table 5.12 GAN and WGAN models discriminator network 

Layer Output Parameters 
Input layer 1 (None, 11) 0 

Dense 1 (None, 512) 6144 
Dense 2 (None, 256) 131,328 
Dense 3 (None, 128) 32,896 
Dense 4 (None, 1) 129 

 

Table 5.13 CGAN and WCGAN models discriminator network 

Layer Output Parameters 
Input layer 1 (None, 12) 0 

Dense 1 (None, 512) 6656 
Dense 2 (None, 256) 131,328 
Dense 3 (None, 128) 32,896 
Dense 4 (None, 1) 129 

5.7 GAINESIS Evaluation 

To evaluate the performance of our models, we used metrics such as the Minmax and 

Wasserstein loss functions. Specifically, the Minmax loss function reflects the distance 

between the distribution of the generated data and the distribution of the real data, for GAN- 

and CGAN-based models. GAN and CGAN algorithms use two Minmax loss functions, one 

for the generator and one for the discriminator. A single measure of distance between 

probability distributions yields both generator and discriminator losses. The generator can 

only change one component of the distance measure in any of these schemes, the term that 

represents the distribution of the fake. As a consequence, we eliminate the other term that 

reflects the distribution of the actual data during generator training. The formula for minmax 

loss is presented in Equation (8). D(x) estimates the probability that the real data instance x 

is real for the discriminator. Ex is the expected value over all real data instances. G(z) is the 

output of the generator when given noise z. D(G(z)) estimates the probability that a fake 

instance is real for the discriminator. Ez is the expected value over all generated fake 

instances G(z)). For the evaluation of a model in WGAN and WCGAN algorithms, the 

discriminator does not classify instances but outputs a number. The discriminator aims to 
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increase the output for real instances rather than fake instances. For this reason, we use the 

Wasserstein Discriminator Loss (9) and Generator Loss (10). Specifically, D(x) is the output 

for a real instance at the discriminator. G(z) is the output when given noise z, at the generator. 

D(G(z)) is the output for a fake instance at the discriminator. 

 

 

From our four generative learning models, our WCGAN-based model was found to be the 

best-performing model in epoch 47,000 of 50,000 epochs, with a generator loss value equal 

to 0.102 (Figure 5.13) and discriminator loss value equal to 0.0984 (Figure 5.14). The next 

best-performing model was our WGAN-based model for epoch 47,000 from 50,000 epochs, 

with a generator loss value equal to 0.0995 (Figure 5.13) and discriminator loss value equal 

to 0.114 (Figure 5.14), while our CGAN-based model’s best epoch was 48,000 from 50,000 

epochs, with a generator loss value equal to 0.369 (Figure 5.13) and discriminator loss value 

equal to 0.263 (Figure 5.14). Our GAN-based model was our worst-performing model, with 

the best epoch being epoch 46,000 of 50,000 epochs, and a generator loss value equal to 

0.453 (Figure 5.13) and discriminator loss equal to 0.273 (Figure 5.14). 

 

Figure 5.13 Generator loss values of our four models for each epoch 

Minmax Loss = Ex[log(D(x))] + Ez[log(1-D(G(z)))] (8) 

Wasserstein Discriminator Loss = D(x)-D(G(z)) (9) 

Wasserstein Generator Loss = D(G(z)) (10) 
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Figure 5.14 Discriminator loss values of our four models for each epoch 

Additionally, we displayed for each epoch the ability of each model to synthesize new 

generated samples based on real samples according to the most important features. From 

this, we observed that our best-performing WCGAN-based model (Figure 5.15) was able to 

synthesize better-generated samples compared with the other models and especially 

compared with our worst-performing GAN-based model (Figure 5.16). To distinguish any 

differences in the quality of the new generated samples and to confirm the evaluation of our 

models, we synthesized new samples based on our best-performing WCGAN-based model 

and based on our worst-performing model GAN-based model in order to develop new GB-

based classifiers. 

 

Figure 5.15 Presentation of how our best-performing WCGAN-based model learned to 

synthesize new generated samples based on real samples 
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Figure 5.16 Presentation of how our worst-performing GAN-based model learned to 

synthesize new generated samples based on real samples 

5.8 Synthesis of New Generated Data Sets 

After we finished with the training, optimization, and evaluation of our four models, we 

selected the best- and worst-performing models. As occurred previously, the model that 

learned to synthesize new generated data similar to the real data was our WCGAN-based 

model, while the model with the worst performance was our GAN-based model. 

Additionally, to be able to observe any differences, we created differently sized data sets 

from each model. As a result, our new generated data sets, which are based on our best-

performing WCGAN model, were named WCGAN-200, WCGAN-400 and WCGAN-600 

according to the size of the sample. Additionally, our new generated data sets were based on 

our worst-performing GAN model, and named GAN-200, GAN-400 and GAN-600. Next, 

we mixed each new generated data set with the initial real training data set, not the test set, 

to be able to evaluate our best new GB-based classifier in the real test data set. So, our mixed 

data sets were WCGAN-Mixed-200, WCGAN-Mixed-400, WCGAN-Mixed-600, GAN-

Mixed-200, GAN-Mixed-400, and GAN-mixed-600. In total, we had 12 new data sets to 

compare. As in the real data set, the new generated data sets’ TF circuits consisted of positive 

samples, with a class label equal to one (label = 1), and TI circuits consisted of our negative 

samples, with a class label equal to zero (label = 0). Additionally, as mentioned previously, 

80% of each data set was used for the training of our new GB-based models, and 20% for 

the evaluation. Next, we analyzed the details of each data set and how these were used for 

the training and evaluation of our new GB-based models. 
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As a result, our new generated data sets were six in total, three for each model and three data 

sets different in sample size. WCGAN-200 and GAN-200 data sets were our data sets 

smallest in sample size and consisted of 432 samples, 216 TF and 216 TI samples. A total 

of 345 samples, 171 TF and 174 TI, were used for the training, and 87 samples, 45 TF and 

42 TI, were used for the evaluation of our new GB-based models. Our middle range data sets 

were WCGAN-400 and GAN-400 data sets. They consisted of 864 samples: 432 TF and 432 

TI samples. A total of 691 samples, 357 TF and 334 TI samples, were used for the training 

and 173 samples, 75 TF and 98 TI samples, for the evaluation of our new GB-based 

classifiers. Our large-sample generated data sets were WCGAN-600 and GAN-600. These 

data sets consisted of 1296 samples, 648 TF and 648 TI samples. For the training of our new 

GB-based classifiers, we used 1036 samples, 523 TF and 513 TI, and for the evaluation 260 

samples, 125 TF and 135 TI. Furthermore, as well as our new generated data sets, our mixed 

data sets were in total six in number. WCGAN-Mixed-200 and GAN-Mixed-200 data sets 

each consisted of one in total from 1136 samples, 230 TF and 906 TI. From these 908 

samples, 191 TF and 717 TI were used for the training and 228 samples, 43 TF and 185 TI, 

were used for the evaluation. WCGAN-Mixed-400 and GAN-Mixed-400 data sets consisted, 

respectively, of 1568 samples in total, 446 TF and 1122 TI. From these 1254 samples, 359 

TF and 895 TI were used as a training set and 314 samples, 91 TF and 223 TI samples were 

used as an evaluation set. Our last mixed data sets were WCGAN-Mixed-600 and GAN-

Mixed-600. Each one of these data sets had in total 2000 samples, 662 TF and 1338 TI 

samples. The training set consisted of 1600 samples, 544 TF and 1056 TI samples while the 

evaluation set consisted of 400 samples, 122 TF and 278 TI (Figure 5.17). 
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Figure 5.17 Histograms with the distribution of TF and TI samples for our 13 data sets 

5.9 New Generated GB-based Classifiers Development 

As mentioned, for the classification of our REAL-880 data set the best ML-based classifier 

from the seven compared algorithms was the GB-based classifier. As a result, we based on 

GB-algorithm for the classification of our new generated data sets. As previously for the 

development of our new generated GB-based classifiers we used and combined a list of four 

hyperparameters: learning rate, max tree depth, number of estimators and max features. 

Specifically, we used a list of learning rate values from 0.05 to 1, a list of number of 

estimators with values from 10 to 100, a list of max tree depth values from 1 to 10 and a list 

of max features values from 1 to 11. In Table 5.14 are presented the best combination of 

hyperparameters for each of the six new generated GB-based classifiers. Also, in Figure 5.18 

are presented the most important features for each new generated GB-based classifier. It is 

observed that the most important feature for the six classifiers was “number of nets”. While 

for the GB-WCGAN-based classifiers the next most important feature was the “total 

dynamic power” and for the GB-GAN-based was the “combinational total power”. 
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Table 5.14 Table with the range of hyperparameters for the new generated GB-based 

classifiers 

Classifier 
Learning 

rate 
Number of 
estimators 

Max tree 
depth 

Max 
features 

GB-WCGAN-200 0.05 10 1 6 
GB-GAN-200 0.05 10 1 3 

GB-WCGAN-400 0.05 10 1 6 
GB-GAN-400 0.05 10 1 3 

GB-WCGAN-600 0.05 10 1 10 
GB-GAN-600 0.05 10 2 3 

 

  
(a) (b) 

  
(c) (d) 



76 

  
(e) (f) 

Figure 5.18 Concept graph presenting the most importance features: (a) GB-WCGAN-200 

classifier; (b) GB-GAN-200 classifier; (c) GB-WCGAN-400 classifier; (d) GB-GAN-400 

classifier; (e) GB-WCGAN-600 classifier; (f) GB-GAN-600 classifier 

5.10 Mixed GB-based Classifiers Development 

Our next step, was the development of mixed GB-based classifiers for the classification of 

our mixed data sets. Again, for the development of our mixed GB-based classifiers we used 

and combined a list of four hyperparameters: learning rate, max tree depth, number of 

estimators and max features. Specifically, we used a list of learning rate values from 0.05 to 

1, a list of number of estimators with values from 10 to 100, a list of max tree depth values 

from 1 to 10 and a list of max features values from 1 to 11. In Table 5.15 are presented the 

best combination of hyperparameters for each of the six mixed GB-based classifiers. Also, 

in Figure 5.19 are presented the most important features for each mixed GB-based classifier. 

It is observed that the most important feature for the six classifiers was “number of sequential 

cells”. While for the GB-WCGAN-Mixed-based classifiers the next most important feature 

was the “combinational total power” and for the GB-GAN-Mixed-based was the “number 

of ports”. 

 

Table 5.15 Table with the best values of hyperparameters for the mixed GB-based 

classifiers 

Classifier 
Learning 

rate 
Number of 
estimators 

Max tree 
depth 

Max 
features 

GB-WCGAN-Mixed-200 0.75 40 10 4 
GB-GAN-Mixed-200 1 20 9 3 

GB-WCGAN-Mixed-400 0.05 50 2 9 
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GB-GAN-Mixed-400 0.05 20 4 8 
GB-WCGAN-Mixed-600 0.05 20 6 7 

GB-GAN-Mixed-600 0.05 10 5 7 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.19 Concept graph presenting the most importance features: (a) GB-WCGAN-

Mixed-200 classifier; (b) GB-GAN-Mixed-200 classifier; (c) GB-WCGAN-Mixed-400 

classifier; (d) GB-GAN-Mixed-400 classifier; (e) GB-WCGAN-Mixed-600 classifier; (f) 

GB-GAN-Mixed-600 classifier 
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 Results 

6.1 New Generated Data Sets Results 

Our first step was to compare our six new generated data sets. So, we developed six new 

GB-based classifiers, one for each data set. According to Figure 6.1 and Figure 6.2, both for 

the training and the evaluation phase, our WCGAN-based data sets enhanced even a little 

the performance of the classifiers compared with our GAN-based data sets. Specifically, the 

GB-based classifiers for the evaluation phase obtained a 99.6% F1-score for our WCGAN-

200 data set, 99.86% F1-score for our WCGAN-400 data set and 99.94% F1-score for our 

WCGAN-600 data set, while for our GAN-200 data set was obtained a 98.37% F1-score, 

99.2% F1-score for our GAN-400 data set and 99.49% F1-score for our GAN-600 data set. 

Additionally, from the above, it can be observed that the performance of the classifiers was 

affected, and also by the size of the data set. Specifically, the data sets with more samples 

enhanced the performance of the classifier compared with the data sets with fewer samples, 

for both WCGAN-based and GAN-based data sets. 

 

 
Figure 6.1 Histograms of the performance of our new GB-based classifiers on our new 

generated training sets. 
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Figure 6.2 Histograms of the performance of our new GB-based classifiers on our new 

generated test sets. 

6.2 Mixed Data Sets Results 

Our next step was to compare our six mixed data sets. As previously mentioned, mixed data 

sets consisted of the new generated samples from our WCGAN-based and GAN-based 

generative models, respectively, and the initial real training data samples from our REAL-

880 data set. According to Figure 6.3 and Figure 6.4 emerged the same conclusions as in the 

comparison of the new generated data sets. Our best GB-classifier was the classifier that was 

developed based on the WCGAN-Mixed-600 data set. Specifically, our new mixed GB-

based classifiers for the evaluation phase achieved a 95.08% F1-score for our WCGAN-

Mixed-200 data set, 97.39% F1-score for our WCGAN-Mixed-400 data set and 98.26% F1-

score for our WCGAN-Mixed-600 data set, while for our GAN-Mixed-200 data set was 

obtained a 94.59% F1-score, 97.61% F1-score for our GAN-Mixed-400 data set and 98.11% 

F1-score for our GAN-Mixed-600 data set. 
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Figure 6.3 Histograms of the performance of our new GB-based classifiers on our mixed 

training sets. 

 

 
Figure 6.4 Histograms of the performance of our new GB-based classifiers on our mixed 

test sets. 

6.3 All Data Sets Results 

According to our results, our best new classifiers are based on WCGAN-Mixed-600 and 

GAN-Mixed-600 data sets. These newly generated data sets, in combination with our real 
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training data set, managed to increase the F1-score for our new best-performing GB-based 

classifiers by 32.18% and 32.03%, respectively (Figure 6.5). 

To be able to distinguish extra details between the WCGAN-Mixed-600 and GAN-Mixed-

600 data sets we used ROC and Precision–Recall curves. Each GB-based classifier of each 

data set was tested with the test sets of each other. According to Figure 6.6, it can be observed 

that our WCGAN-600 (Figure 6.6 c,d) and WCGAN-Mixed-600 (Figure 6.6 g,h) data sets 

significantly enhanced the classification procedure compared with our GAN-600 (Figure 6.6 

e,f) and GAN-Mixed-600 data sets (Figure 6.6 i,j). Specifically, our GB-WCGAN-Mixed-

600 classifier, compared with the GB-GAN-Mixed-600 classifier, was able to classify with 

better performance 99% AUC and 99% AP for not only the GAN-Mixed-600 data set but 

also the REAL-880 data set, with 75% AUC and 16% AP compared with the GB-CGAN-

Mixed-600 classifier, which obtained 70% AUC and 41% AP for the WCGAN-Mixed-600 

data set and 68% AUC and only 9% AP for the REAL-880 data set. So, our new best 

classifier was the GB-WCGAN-Mixed-600. 

 

 
Figure 6.5 Histograms of the performance of our 13 GB-based classifiers on our 13 test 

sets. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 
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(i) (j) 

Figure 6.6 Concept graph presenting ROC and Precision-Recall curves: (a) ROC curve for 

all the GB-based classifiers for the REAL-880 data set; (b) Precision–Recall curve for all 

the GB-based classifiers for the REAL-880 data set; (c) ROC curve for all the GB-based 

classifiers for the WCGAN-600 data set; (d) Precision–Recall curve for all the GB-based 

classifiers for the WCGAN-600 data set; (e) ROC curve for all the GB-based classifiers for 

the GAN-600 data set; (f) Precision–Recall curve for all the GB-based classifiers for the 

GAN-600 data set; (g) ROC curve for all the GB-based classifiers for the WCGAN-Mixed-

600 data set; (h) Precision–Recall curve for all the GB-based classifiers for the WCGAN-

Mixed-600 data set; (i) ROC curve for all the GB-based classifiers for the GAN-Mixed-600 

data set; (j) Precision–Recall curve for all the GB-based classifiers for the GAN-Mixed-600 

data set 

6.4 Evaluation of our Best GB-WCGAN-Mixed-600 Classifier with our GB-REAL-

880 Classifier 

To evaluate the effectiveness of our new GB-WCGAN-Mixed-600 classifier, we tested our 

new classifier in the test set of our REAL-880 classifier. 

As a result, as shown in Figure 6.7, our GB-WCGAN-Mixed-600 classifier for the REAL-

880 test set performed with 98% Accuracy, 74% Precision, 74.5% Recall and 74.25% F1-

score, while the GB-REAL-880 classifier for this set performed with 97.72% Accuracy, 

74.13% Precision, 62.20% Recall and 66.08% F1-score. With our new GB-WCGAN-

Mixed-600 classifier we had an 8.17% increase in performance, which is satisfactory due to 

the lack of a samples test set. 

So, from the above our goal of generating new circuit samples based on area, power and time 

analysis features from the GLN phase is validated, which would enhance the development 

of a robust ML-based classifier, for the classification of TF and TI circuits. Our new 
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generated data sets, large in size, enhanced the classification of TF and TI circuits. 

Specifically, throughout this process our first goal was to develop new generated data sets 

to observe how significantly or not our new data sets could enhance the classification of TF 

and TI circuits at GLN. Additionally, our next goal was to evaluate if our new data sets could 

be used as a solution for the problem of a lack of samples, from which the field of 

countermeasures against HTs suffers. The experimental results prove the achievement of our 

goals, as our new WCGAN-Mixed-600 data set managed to develop a more effective 

classification model for the classification of TF and TI circuits at the GLN phase of ASICs. 

 

 

Figure 6.7 Histograms of the performance of our new best-performing GB-WCGAN-

Mixed-600 classifier compared with our GB-REAL-880 classifier on the REAL-880 test 

set. 

6.5 Comparison to Existing Methods 

Our final step was to compare our best performing GB-WCGAN-Mixed-600 classifier with 

existing methods. As be mentioned we named GB-WCGAN-Mixed-600 classifier as 

ATLAS. So, we compared our ATLAS with two studies that can be found in the literature 

that is based on SVM [24] and RF classifiers [25]. 



86 

 

We chose 15 circuits that existing methods were tested on, to make the comparison with our 

model fair Figure 6.8 and Table 6.1. Our ATLAS model exhibits the highest performance 

compared to existing methods, with an average Precision and F1-score of 100%. 

It is worth mentioning that our ATLAS classifier for HT classification is based on area and 

power feature values that are extracted from the whole circuit. Therefore, we provide a 

prediction for the entire circuit, labeling it as TF or TI. Both existing studies however, break 

each circuit down to the level of nets. Each net is treated as an individual sample with its 

own set of extracted features. Thus, Table 6.1 includes performance values with decimal 

points for [24] and [25], while we provide a value for each circuit (i.e., RS232). 

 

 

Figure 6.8 Histograms with the performance comparison between existing approaches and 

our approach ATLAS. 
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Table 6.1 Table with the comparison of our method with existing methods for the same 

benchmark 

Test Circuits Precision F1-Score 
[24] [25] ATLAS [24] [25] ATLAS 

RS232-T1000 11.5% 92.3% 100% 19% 96% 100% 
RS232-T1100 3.1% 78.3% 100% 5.9% 61% 100% 
RS232-T1200 3.4% 100% 100% 6.5% 93.8% 100% 
RS232-T1300 3.5% 100% 100% 6.7% 100% 100% 
RS232-T1400 4.1% 100% 100% 7.8% 98.9% 100% 
RS232-T1500 4.1% 97.4% 100% 7.9% 96.1% 100% 
RS232-T1600 3.5% 90% 100% 6.7% 91.5% 100% 
s15850-T100 2.9% 95.5% 100% 5.7% 85.7% 100% 
s35932-T100 0.5% 100% 100% 1.1% 84.6% 100% 
s35932-T200 0.6% 100% 100% 1.2% 15.4% 100% 
s35932-T300 0.4% 96.8% 100% 0.7% 88.2% 100% 
s38417-T100 0.8% 100% 100% 1.7% 50% 100% 
s38417-T200 0.8% 100% 100% 1.5% 63.6% 100% 
s38417-T300 2.6% 100% 100% 5.1% 85.7% 100% 
s38584-T100 0.3% 33.3% 100% 0.6% 9.1% 100% 

Mean 2.81% 92.2% 100% 5.21% 74.6% 100% 
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 Conclusions and Future Work 

The HT detection field has been at the forefront of hardware security for the last two decades. 

As the technological advancements require an ever-increasing complexity level of ICs, the 

same trend can be observed in HT-based attacks, in their sophistication and elusiveness that 

prevents detection at pre-silicon stages. However, the pace of advancement has not been the 

same for the HT detection field, since the development of robust HT detection methods 

requires abundant data in the form of HT-free and HT-infected circuits. This major obstacle 

can be attributed to the lack of freely available IC designs, since the majority of ICs are 

protected by IP rights. Public repositories such as Trust-HUB indeed provide free designs; 

however, the supported ICs are limited both in terms of absolute numbers and in 

function/size diversity. 

To alleviate the imbalance problem in freely accessible IC design repositories, we propose 

GAINESIS, a novel approach for generating synthetic HT-free and HT-infected GLN feature 

vectors in ASICs from a WCGAN-based generative model and high-quality area and power 

analysis features extracted by the Design Compiler NXT tool. Balanced synthetic data sets 

of different sizes were generated and utilized to train several ML algorithms that are 

frequently being applied in the HT detection field. This approach enabled us to evaluate 

GAINESIS and extract results showing that our method can be effective in generating 

synthetic feature vectors that can be used for training ML models, which can generalize the 

original Trust-HUB test set and perform better than the models trained on the original 

imbalanced data. 

Even though GAINESIS is a novel approach that was able to marginally improve (~8% in 

terms of F1 score) the performance of the original test set, it has the potential to open new 

research avenues for the HT detection field, as it can also be applied in other pre-silicon IC 

production phases such as RTL, P&R and GDSII. However, GAINESIS cannot remedy the 

problem of the lack of numbers and diversity in terms of size and function that is present in 

Trust-HUB and other freely accessible repositories. To have a better understanding of 

GAINESIS’s ability to provide high-quality synthetic data, we need to assemble a 

significantly larger and more diverse design set, and more importantly, designs that are 

derived from real-world applications. For small laboratories, this is a costly and extremely 

time-consuming effort. Instead, a consortium-level initiative needs to be established where 
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laboratories and companies from all over the world can contribute to this cause in a 

crowdsourcing fashion, with the clear purpose of generating large and diverse data sets. 

In the future, we will create our own small-in-size circuits, aiming to solve the lack of 

diversity that is present in Trust-HUB, and through these circuits our GAINESIS tool will 

be upgraded. In addition, we believe that a more efficient strategy for the detection and 

mitigation of HT combines different techniques that complement each other. Therefore, we 

will combine GAINESIS with other run-time and test-time techniques, such as the works in 

[158][159][160] Our GAINESIS tool is available through this link: https://caslab.e-

ce.uth.gr/ToolsandDatabases.html. 
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